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Four height variables, boundary correlations, and dissipative defects
in the Abelian sandpile model
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We analyze the two-dimensional Abelian sandpile model, and demonstrate that the four height variables
have different field identifications in the bulk, and along closed boundaries, but become identical, up to
rescaling, along open boundaries. We consider two-point boundary correlations in detail, and discuss a number
of complications that arise in the mapping from sandpile correlations to spanning tree correlations; the structure
of our results suggests a conjecture that could greatly simplify future calculations. We find a number of
three-point functions along closed boundaries, and propose closed boundary field identifications for the height
variables. We analyze the effects of dissipative defect sites, at which the number of grains is not conserved, and
show that dissipative defects along closed boundaries, and in the bulk, have no effect on any weakly allowed
cluster variables, or on their correlations. Along open boundaries, we find a particularly simple field structure;
we calculate alh-point correlations, for any combinations of height variables and dissipative defect sites, and
find that all heights and defects are represented by the same field operator.
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I. INTRODUCTION Despite its simplicity, certain basic properties of the ASM

. . . remain unknown. For example, despite intensive work, the
The Abe"aﬂ sandpile _modeﬁASM)_, introduced by Bak, power law governing the sizes of avalanches in the ASM is
Tang, and Wiesenfeld, is the original prototype for self-

. o . _ " still unknown—se€d 8] for a review. And while the height
organized criticalityf 1]. Systems with self-organized critical- one variable is well understood, the roles played by the
ity are naturally driven to a critical point, and thus can po- '

. : . ; higher height variablegtwo, three, and foyrare not. For
tentially explain how power laws occur in nature without anyexample, no bulk two-point correlation functions of higher

fine-tuning of parameters. Since their introduction, sandpileheight variables are known

models have been used to model an extraordinarily wide g ynown that the ASM is related to the set of spanning
rgrldrg.e of ssygt?ms, from earthquakidd to river networks  yoog that can be drawn on the sandpile lattice, and that this
[ 1;' st?e[ ' ].or TEVIEWS. ideri h di . elationship can be used to perform exact calculations of
__ |0 be precise, we are consl ermg.t € two- IMensionah g probabilities[7,9]. A spanning tree is a set of arrows
isotropic Abelian sandpile model. This is a very Slmpledrawn on the lattice, such that each site has exactly one

model; in fact, its simplicity is its strength, since otherwise 'tﬁirow pointing from the site to a neighbor, and such that

could not act as a njodellfor such a diverse range of physicalere are no closed loops of arrows. Following the path of
syst?‘ms. T?]e .AﬁM |s.d(ta){|nhed on absqua;re lattice, fwherc(je €aCrows from any site will eventually lead off the edge of the
site has a height varia he number of grains o sand at sandpile(or, more generally, to a dissipative site, such as
that sitg that can range from one to four. At each time step.s) \nd on an open boundarythe “site” off the edge of the

a grain of sand is added to a random site. Any site with More, ,qyiie is called the root. A number of relationships be-

than four grains is unstable, and collapses, losing four graingy;eqp, the ASM and spanning tree states are known. For ex-
and sending one grain to each of its neighbors. Unstable S't%ﬁnple, the number of recurrent states of the AGkates that

time step begins—a grain .is added to a random Sit?’ and ﬂ]g equal to the number of spanning trees that can be drawn on
process begins anep]. Initially, probabilities of configura- o sandpile lattic&9].

tions will depend on the initial conditions, but after a long Spanning trees are, in turn, related to ¢ve-2 conformal
period of time, the ASM develops a well-defined probability ¢4 theory (CFT) Thé c=-2 ,CFT is the simplest known

distribution of states, independent of the initial Conditionsexample of a logarithmic conformal field theciyCFT), and
[7]. Typically, the number of grains is conserved in eachiS well understood11-13. '
toppling, except for sites along open boundaries, where A methoq introduced by Majumdar and Dhar exploits the
grains are lost with each toppling.e., fall off the edge 1\ h5ing between ASM states and spanning tree states to
T.here must be at least one Q|35|pat|ve site—i.e., at Ie_ast OMbtain exact ASM probabilitiegl4]. It has long been known
site where the number of grains decreases upon toppllng—%at the Majumdar-Dhar method can be used to find the two-
eI;e the sgndpﬂe would eventl_JaIIy rgach a state where torb'oint correlation function of the unit height variable, which
plings continued endlessly during a single time step. decays as If [14]. More recently, Mahieu and Ruelle used
the Majumdar-Dhar method to calculate correlation functions
of a number of ASM height configurations, known as weakly
*Electronic address: mjeng@siue.edu allowed cluster variablegl5]. They not only found that all
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the correlations decayed asri/but were able to use their correlations. The relationship between ASM states and span-
correlations to identify the 13 simplest weakly allowed clus-ning tree states is not what one might have initially expected:;
ter variables with operators in the LCFT. These variablesve also note that linear relationships between nonlocal span-
were all identified with linear combinations of three LCFT ning tree conditions and local spanning tree conditions for
field operators, all of which had scaling dimension two, butone-point probabilities do not carry over in a simple fashion
only one of which—th& 090+ 96960 operator—was isotropic. for multipoint correlation functions. Both of these complica-

In some ways, this suggested that the higher height variablegns introduce what we call “anomalous graphs™—while
should be identified withgdao+a006: on the other hand, these complications are important, because they are technical
Mahieu and Ruelle pointed out that this appeared inconsigh nature, we delegate much of the discussion to the Appen-
tent with LCFT operator product expansiof@PE’S. dixes. In Sec. V we calculate the anomalous graphs, and

Despite the power of these mappings, and of theconjecture that the anomalous graphs have no effect on the
Majumdar-Dhar method, fundamental questions about theniversal parts of any boundary correlation functions; while
ASM remain unanswered, because aspects of the mappinge have not been able to prove this conjecture, it holds true
between the ASM and=-2 LCFT are still unknown—for for all correlation functions that we have calculated.
example, it is not known what field operators in tbe-2 In Sec. VI, we look at correlation functions along closed
LCFT represent the higher height variables of the A8  boundaries. For two-point correlation functions, we find that
indeed, whether such a representation even gxistsingle  while we disagree with Ivashkevich’s relationship between
site with height two, or any higher height variable, is not aASM and spanning tree states, we agree with his final re-
weakly allowed cluster, and thus higher height probabilitiessults. However, we argue that these final results are, in fact,
and correlations cannot be calculated with the Majumdarnot consistent with identifying all height variables with the
Dhar method. Priezzhev was able to extend the Majumdarsame field operator. Next, we calculate all three-point func-
Dhar method to calculate the bulk probabilities for all highertions along closed boundaries that involve at least one unit
height variableg10]. However, the bulk correlations of the height variable, and use these to make field identifications
higher height variables, which would be needed to obtain th@long closed boundaries. Selected three-point functions ap-
field identifications of the higher height variables, remainpear in Eqs(17)—19), and we state the field identifications
unknown. in Egs.(20)—(22).

Ivashkevich calculated all two-point correlation functions  Next, in Sec. VII, we introduce the concept of a dissipa-
of all height variables, along open and closed boundarietive defect site, and discuss its effect on the lattice Green
[16]. He found that all boundary correlations, between allfunctions for the open, closed, and bulk cases. In Sec. VIII,
height variables, decayed asri,/and argued that this im- we show that in the closed and bulk cases, dissipative defects
plied that all four height variables should be represented byave no effects oanyweakly allowed cluster variables. This
the same field operatqup to rescaling Dhar has argued demonstrates that an analysis of weakly allowed cluster vari-
that, based on clustering properties of correlation functionsables, such as that [15], cannot provide a complete picture
the bulk correlations should be expected to factorize in af the ASM. Our results imply, as a particular case, that
manner consistent with giving all four height variables thedissipative defects in the closed and bulk cases have no ef-
same field identificatiofl17]. fect on the unit height probability, or on correlations of unit

However, we argue here that the four height variableeights. They do, however, have an effect on the higher
should in fact receive different field identifications, both height variables; we show this analytically for the closed
along closed boundaries, and in the bulk, and propose fieldase, in Eqs(28) and (29), and have checked this numeri-
identifications along closed boundaries. Our conclusions areally for the bulk case.
based on analysis of closed boundary three-point functions, In Secs. IX-XI, we compute al-point correlation func-
and of dissipative defect sites, as well as a reanalysis of thions, for any number of height variables, and with any num-
methods and results of Ivashkevich. However, we show thaber of dissipative defects, along open boundaries. We find
along open boundaries all four height variables, as well aghat there, all four height variables and dissipative defects are

dissipative defect sites, are represented by the same operatgyl, represented by the same dimension two fieidé. In
3696, in thec=-2 LCFT. We demonstrate this by computing fact, all local arrow diagrams along open boundaries are rep-
all n-point correlations of height variables and dissipativeresented by#d6, up to multiplicative prefactors.

defects. _ . A short summary of these results can be found1ig].
In Secs. Il and Il we briefly review the methods used by

Majumdar, Dhar, and Priezzhev for studying the ASM. In
Sec. IV, we review lvashkevich’s calculations of the bound-
ary height probabilities. At its core, the ASM is a tractable model because the
In Sec. V, and Appendixes A and B, we discuss issuesandpile model has an Abelian structure; the state of the
associated with boundary correlation functions. While lvash-sandpile does not depend on the order in which grains are
kevich has already calculated the boundary two-point correadded to the sitel7]. As a result of this Abelian structure, it
lations[16], we show that he mischaracterized the mappingcan be shown that the states of the sandpile fall into two
between ASM configurations and spanning tree configurasimple categories. Some of thé' 4tates of the sandpile
tions, and a correct characterization results in a number dfwhereN is the number of sitgsare transient, which means
complications, necessitating a reanalysis of the two-pointhat they can occur early in the ASM’s evolution, but occur

Il. METHODS FOR ANALYZING THE ASM
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with zero probability after an infinitely long time. The other P fl fz J?3
states are recurrent, and all occur with equal probability after -3 1 1 1 :
long times. So the probability for a proper¥/ to occur is -
nothing more than the fraction of recurrent states having B=(1 -1 0 0 1;1 (2)
propertyX. 1 0 -1 0/ j,
To analyze the sandpile, it is convenient to allow more 1 0 0 -1 fs

general toppling rules. We characterize the sandpile by atope, o it height probability is dét BG)=2(m-2)/ 7
!ol!ng m,at”X,AiJ" wherei and] ari any Iafmce s!tes...topp_les This method was also used by Majumdar and Dhar to calcu-
if its height is ever greater thaly, at which point its height |56 the two-point correlation of the unit height variapie].
goes down by, and the height of every other sifegoes Priezzhev extended the Majumdar-Dhar method to allow
up by -A7=0 (Aj=0 if fandf are not neighbojs The  for 'ghe cglculation of diagrams with clgsed loops. .With the
original ASM, described in the Introduction, hag=4 when  basic Majumdar-Dhar method, all off-diagonal entries of the
=7 (or A;=3 wheni ~{ is along a closed boundaryA; = toppling matrix are either O or —1. Priezzhev proved that if in

2 - ) ) A’ we setn off-diagonal entries oA to —¢, then
-1 wheni andj are nearest neighbors, ang=0 otherwise.
Dhar was able to show that the number of recurrent states, im detA’) 3
given very general restrictions ah, is equal to dé@A) [7]. e €

However, degtA) is also known to be equal to the number of . . .
. is equal to the number of arrow configurations such that each
spanning trees that can be drawn on the latf2e In the

. oA indi h b ¢ of the n corresponding arrows is in a closed loop of arrows,
spanning tree representatioj indicates the number of \yhere each closed loop contributes a factor of -1, and there

neighbors that the arrow fromcan point to;Ajj=-1 if an  are no closed loops other than those going through these

arrow can point fromi to f andAjj=0 otherwise. bonds. . . _ _

Certain height probabilities in the ASM can be equated Such configurations are not spanning trees; spanning trees
with probabilities for spanning trees to have particular arroca@nnot have any closed loops. However, Priezzhev found
configurations. Probabilities fasomearrow configurations that to calculate certain spanning tree probabilities, he
can be computed simply by modifying the toppling matrix needed to calculate graphs that had closed I¢géggaphs.

from A to A’, in a way that enforces that arrow configura- We find this method useful for the calculation of certain
tion. Then, the number of spanning trees with the configuragIOSGd boundary correlations.
tion is defA’), and the probability of the configuration is

detA’)/def{A). Defining B=A'-A, the probability be- Ill. HEIGHT PROBABILITIES

comes Priezzhev determined a relationship between higher

height probabilities and spanning tree states, which we re-
, view here[10].
detA’) = de{l + BG) (1) Central to our analysis is the concept of forbidden sub-
detA) ' configurations(FSC’9. A forbidden subconfiguration is a

subsetF of the lattice, such that for ali e F, hr<cj(F),

G=A"1is the well-known lattice Green functidi24] (see where hiis th% he|g.ht of Slt_e’ andci(F) is the number of
Appendix O. If A’ only differs fromA in a finite number of ~N€ighbors that has inF. Majumdar and Dhar proved that a
entries, therB is finite dimensional, and the probability can State of the ASM is recurrent if and only if it has no FSC’s
be easily computed. 7,9]. .

Majumdar and Dhar used this method to find the probabil- The probability for a sitd to have height two is more
ity for a sitei to have unit heigh{14]. To do this, they ~Complicated than the height one probability)]. In this case,

defined a modified, or “cut” ASM, in which three of the four changing the site height to one could either leave the ASM in
an allowed(recurrent state, or produce a FSC. The first case

. X . ) just gives the height one probability, which has already been
a bond is removed, the maximum height of sites on each e alculated, so we consider the second case. Changing the

is decreased by one; so the three sites adjacargebmaxi- height ofi from two to one can produce multiple FSC’s. Let

mum heights of 3, and gets a maximum height af-3=1.  F pe the maximal forbidden subconfiguratiFSC) pro-

It is not difficult to show that recurrent stat€gof the origi-  quced by this changéBecause more than one FSC can be
nal ASM) wherei has height one are in one-to-one corre-produced, the word “maximal” is necessary for complete
spondence with the recurrent sta®sof the cut ASM. In  precision, and for this mapping to work; Priezzhev simply
this correspondence, we map froddto S’ by lowering the referred to “the” FSC, but this does not introduce any errors

heights of each of the three sites cut off frd?w‘oy one. in his analysig10].) F must contain?, and exactly one of the

Letting j,, j», andjs, be the three neighbors thahas been neighbors ofi, and be simply connected, but can otherwise
cut off from, we have have arbitrary shape. The stateef the original ASM where

bonds connectinajto nearest neighbors are removed. When
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changing the height af from two to one produceE as the Q Q
MFSC are in one-to-one correspondence with st&tesf a 2B

modified ASM. In the modified ASM, all the bonds border- i i

ing F are removed, except for orarbitrarily chosepbond =t f)

of i. In the correspondence, we map fr@&to S’ by lowering ZB L N +

heights of all sites that bord&r by the number of neighbors

of F that they have been cut off froniln this mapping, 25 m m

heights inF are unaffected.With this mapping, the stat8

has no FSC'’s in the original ASM if and only if the steie
has no FSC'’s in the cut ASMPriezzhev's explanation used = +
a slightly different, but equivalent, argument, based on the
burning algorithm, a method for determining if a state is
recurrent7,10].)
The sitei is called a predecessor of the sftisn the span- 2CPZ

ning tree if the path from to the root goes througﬁ We 8_

define NNP, as the number of nearest neighbors’ftﬁat are 2

predecessors of. Then, the correspondence above shows € =m +m
that the number of states of the modified ASM is equal to the

number of spanning trees of the modified lattice, which is in

turn equal to the number of spanning trees wHeis the set

of predecessors af Summing over all possible seks we In Fig. 1 we list all possible nonlocal arrow configurations

simply obtain the number of spanning trees where NNP
Similarly, it can be shown that the number of ASM states

allowed when has height (or greatey but forbidden when

i has heighh—1 (or less, is equal to the number of spanning

trees where NNRh-1. Thus, the probabilityPagy(h) for

the site to have exactly heightin the ASM is

FIG. 1. Nonlocal arrow diagrams along closed boundaries.

around a sitd of a closed boundary. In each picture, the
dashed line is the boundary, and the central site isarge,

solid circles are predecessors iofwhile large, open circles
are not. We see explicitly that the predecessor relationships
are nonlocal B, and ¢, differ only in whether the site above

i leads toi by a chain of arrows—since the chain of arrows

SET,(u 1) can go through sites distant froi?nthis is a nonlocal distinc-
Pasmh) = 21 m+1-u’ ) tion. If we can figure out the probabilities of all these dia-

. grams, we can figure out the NNP probabilitiesd thus the

wherePg,r(u-1) is the probability that a randomly chosen height probabilities For example, the probability for NNP
spanning tree will have NNRBu-1, andm; is the maximum =1 is simply 28,+283,+27y, since these diagrams catalog all

possible height off. (m=4 in the bulk, and along open the ways thai can have exactly one NNP.
boundaries, whilanj=3 along closed boundarig¢dzor more These nonlocal diagrams are difficult to calculate. On the
details, se¢10]. other hand, local restrictions are easily calculated with the
This gives an exact representation of ASM height prob-Majumdar-Dhar method. All local arrow diagrams along
abilities in terms of spanning tree probabilities. However,closed boundaries are shown in Fig. 2. Note that these dia-
these spanning tree probabilities are not easy to calculatgrams do not have solid or open circles, because predecessor
Spanning tree probabilities that correspond to local restricrelationships are not specified in local diagrams. Ivashkevich
tions on the spanning tree can be calculated with thepointed out that the local arrow diagrams could be written as
Majumdar-Dhar method. However, the statement that NNP
=u-1 is anonlocal restriction on the spanning trgéor u L =
>1). Priezzhev was able to calculate these nonlocal prob- ol
abilities, but his calculations were complicated, and do not

+

—>—e—>— ———<—
appear to be easily extensible to calculation of bulk correla- 2L.,= i + at
tions. However, this problem turns out to be more tractable |
along a boundary. | |
2Lc,3= +
IV. BOUNDARY HEIGHT PROBABILITIES
For sites at the boundary, the relationship between height L= 3 t ¢

probabilities and NNP's still holds, and the NNP condition is Tt

still nonlocal. Nevertheless, Ivashkevich was able to show, _

through an ingenious transformation, that the ASM height 2L.s= +

probabilities are much easier to calculate along boundaries

[16]. FIG. 2. Local arrow diagrams along closed boundaries.
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linear combinations of nonlocal arrow diagrams. For ex-
ample, looking at Figs. 1 and 2, we see thai= ¢, +3;. At

first sight, there are more nonlocal arrow diagrams than local
arrow diagrams, so such linear relationships would not ap-
pear to let us _solve for th_e nonlocal arrow d'?‘grams- How- FIG. 3. Anomalous graph of the first kind arising in the calcu-
ever, lvashkevich also pointed out that certain nonlocal arpaion of the two-point function.

row diagrams are equal in probability—for exampdg, and

¢, are equal in probability, because we can make a one-to-

one mapping fromg, to ¢, by reversing all arrows in the  geconq; leaving aside for now the anomalous graphs of

long path of¢,, and then switching the incoming arrowito  the first kind, we need to calculate correlations of nonlocal
Similarly, 8, = B,. Then, we have as many nonlocal diagramsyrow diagrams. It would be convenient if we could use the
as local diagrams, and can solve for the nonlocal arrow diagnear relationships relating nonlocal arrow diagrams to local
grams.(In fact, along open boundaries, the number of localy o diagrams found for one-point functiof8ec. IV}, and

diagrams is one greater than the number of nonlocal arrow hemind denthat i and ati f int f .
diagrams, so that the system is overconstrained, providing yse t emndepen entlyt | arl a_t] ?r two-p0|_nt uncnons.
check on the calculationslvashkevich used this to calculate Ve @gain call this approach “naive,” and again, this approach

all height probabilities along open and closed boundariesd0€s not quite work. The problem arises because for one-
See[16] for the full list of linear relationships between local Point functions, we treated, and ¢, as equivalent, based on

and nonlocal diagrams. a one-to-one correspondence in which a long path was re-
versed. In a correlation function of nonlocal arrow diagrams,
V. BOUNDARY TWO-POINT CORRELATIONS AND the long path from ap, at ] may go through arrow con-
ANOMALOUS GRAPHS straints neaf, which are not free to be reversed. We discuss

The calculation of boundary correlations is much morethis problem in detail in A.ppendix B. Cpnsideration of this
difficult. We show in Appendix A that Ivashkevich’s calcu- Problem shows that, relative to the naive approach, our re-
lation of the two-point functions was incorrect, and ignoredsults are changed by grapasndb, shown in Fig. 4. We call
complications that arise in the relationship between ASMthese anomalous graphs of the second kind.
height correlations and spanning tree correlatiGathough The anomalous graple b, andc can be calculated with
his end result turns out to be correcin Appendix B, we the extension of the method of Priezzheyv, discussed in Sec. Il
discuss further complications that arise in transforming fron{10]. We discuss only the calculation of tHe term; the
nonlocal spanning tree correlations to local spanning treanalysis of the other terms is similar.
correlations. We summarize the results here, and analyze the b represents a subset of spanning trees, and thus cannot
resulting “anomalous graphs.” have any closed loops. However, it comes “very close” to

The first complication arises in the correspondence benaying a closed loop that includes the distant sitesd j,
tween ASM height probabilities and spanning tree probabili-ang we see in Fig. 5 thétcan be written as a sum of closed

ties. It would be natural to think that, analogously to &g, loop diagrams.
the ASM probabilityPas)(hy, hj) for the sites andj to have Priezzhev’s method allows us to calculate the closed loop
exactly heightsh; andh; should be given by diagrams. We represent an arrow whose weighk is set to
K he —e(e— ) with a wavy bond line. As discussed in Sec. I,
o< Pspru-1p-1) these bonds must be part of a closed loop, and we get a factor
PASM(hivhf):Z (5) of =1 for every closed loop. This gives the relations in Fig. 6.

o (M 1l-wym+1-v)’
1ozt (M (m ) Taking the difference of the two graphs in Fig. 6 then gives

wherePgyr(u-1,0-1) is the probability that in a spanning the value of a closed loop diagram that goes through both

tree, NNP=u—-1 and NNP=v-1. However, this turns out 0 54" Using this method, we find the number of diagrams
not be quite the case. Equati@®) is a natural guess, which b1, b2, andb3 (labeled in Fig. 5, as ratios ofN, the total
we call a “naive” approach, but as shown in Appendix A, the,ymper of spanning trees:

left and right sides of Eq(5) differ by a subset of spanning
trees that we call anomalous graphs of the first kifidhese
graphs are not anomalous in any physical sense; we simply
mean that they differ from what we would get, using a cer-
tain naive starting poinit.

The set of anomalous graphs of the first kind, for the
closed case, is shown in Fig. @Ve represent the root with a
star) In the graph, NNP=NNP;=1, so this graph appears in
the right-hand side of Eq5) for hj=hj=2. However, we
show in Appendix A that this graph does not contribute to
the 2-2(height two—height twpcorrelation, but instead con-
tributes to the 2-3 and 3-2 correlations, and gets subtracted FIG. 4. Anomalous graphs of the second kind arising in the
from the 3-3 correlation. calculation of the two-point functions.
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FIG. 5. Anomalous graplh as a linear combination of closed
loop diagrams.
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X is the separation betweefmndfalong the defectg(x) is

the Green function betweenand j, and diverges as (h),
whereL is the system sizéit also diverges as [x)]. The

8

PHYSICAL REVIEW E 71, 036153(2005

However, to findb, we take the linear combinatioiN,,
—Np2+Npz)/N and the IfL) divergences cancdkhis pro-
vides a check on our calculations and ¢ can be found
similarly. We find

_3m-8 1
a= 273 *0 ; ' ©
37-8 1
b= 2734 +O(;>’ (10
1
C:O<$). (11

a andb are both of order 1¢*. The two-point correlation
functions turn out to decay as %Y so the anomalous graphs
could, in principle, affect the universal parts of the correla-
tion functions. However, the anomalous graphs of the second
kind come in the combinatiofa—b) [see Eqs(B5)—(B7)].

So their total contributions to the two-point correlations are
O(1/x%), and can be dropped.

The end result is rather surprising. A “naive” approach
might simply apply the relationship between ASM states and
NNP conditions found for the one-point functions, indepen-

dently atfandf[i.e., extend Eq(4) to Eq. (5)], and then
apply the relationships between nonlocal arrow diagrams and
local arrow diagrams found for the one-point functions, in-

dependently afandf. Neither of these steps is correct, and
a correct analysis produces correction tefithe anomalous
graphs to this naive approach. But, somehow, the anomalous
graphs, while nonzero, produce no correction to the leading-
order, universal results at any stage of the computation; the
naive approach gives the answers. In fact, we find in the
following sections that the naive approach again gives cor-
rect results for all three-point closed boundary correlations
that we have calculated, and for all open boundary correla-
tions. This leads us to conjecture that the naive approach
always produces correct universal results, for all correlations.
If this conjecture were proven true, it would greatly simplify
further calculations—for example, the anomalous diagrams
have prevented us from calculating the 2-2-2 correlation
along closed boundaries.

VI. TWO- AND THREE-POINT CLOSED BOUNDARY
CORRELATION FUNCTIONS

restriction that spanning trees should have no closed loops

greatly limits the number of possible spanning trees, when

the outlets to the rootopen boundarigsare very far away.
So diagrams such 4, b2, andb3, that allow a closed loop,

are much more numerous than diagrams of spanning trees.

e S I

We define, for all correlation functions along closed
boundaries,

fc(alvaZa e aan) = <(5hx1,al - pal,c) T (é\hxn,an - pan,c»c-

(12)

In this correlation function, the heigﬂrtxu at the boundary
site x, is required to bea,. We have subtracted off the con-
stant boundary probabilitiep, ., which were found in16],

as described in Sec. IV. The subscript “c” stands for
“closed.” As already noted, despite errors in the setup in

FIG. 6. Use of = weight bonds to evaluate closed loop [16], the results of 16] are nevertheless correct, where it was

diagrams.

found that
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9 48 64 1 leading-order terms of the correlation function.
fe(1,D)={- ) + P p— (X; = %) o, (13 These correlation functions are consistent with identifying
e the height variables with the following field operators in the
12 68 96\ 1 ¢=-2 CFT:
fc(1,2)=(———3+—4>—4 (14) 2(37—-8 _
™ () - (WT)(59(96), height one, (20)
61 96 144 1
f.(2,2=|l-—S+—=-—|——+ - 15
(2.2 ( 2 7T4>(x1—x2)4 a9 6(m—4)

4 — 1
- (9096) + 2—0a20, height two, (21)
The correlation functions involving the height three variables &
were also calculated, but we do not write them here, as they
. ; . > 8 — 1 — .
are determined by the requirement that all height probabili- ﬂ_z((;g(;g) - —0#6, height three. (22)
2 '

ties must sum to 1 at every sitglhere is a misprint in the

result forfc(3,3) in [16] ] ) The representation of the=-2 CFT used here is described
Ivashkevich argued that the fact that all two-point corre-pjefy in Appendix E. Note that the boundary correlations in
lations decay as 1%;—X,)* indicates that all three height Egs.(17)—(19) are the same as thmulk correlations of Eqs.
variables are represented by the same field operator. HOV(ZO)_(ZZ), and that while the=-2 CFT contains holomor-
ever, if all height variables were represented by the SaMEhic and antiholomorphic fieldshe @ andd of Eq. (E1)], the
operator, we would expect the two-point functions to factor-fields in Eqs(20)—22) contain only holomorphic fields. This

ize, as is consistent with boundary CFT. While fields in the bulk
KK, generally have holomorphic and antiholomorphic parts, near
felu,v) == (X, — Xp)¥' uve{l,23, (16) a boundary the antiholomorphic pieces behave, in all corre-

lation functions, like holomorphic pieces at mirror positions
for some constantsK,. However, the results in Eqgs. across the boundafyl9].
(13)<(15) do not factorize in this manner. Dhar argued that |; is also consistent to make the substituti@n»?, 9—
we should expect this factorization for bulk correlations,_g in these field identifications, as the—2 LCFT is sym-
based on the “clustering properties of correlation functions,’\atric under this transformaticftssee Eq(ED)].
but we see that this factorization already fails along closed the fact that the field identifications for the height vari-
boundarieg17]. (We will see later that the open boundary gpes differ along a closed boundary proves that they must
correlations do, however, factorize in this manner, for ally 54 giffer in the bulk. This is because in a CFT boundary
n-point correlations. operators are derived from operator product expansions of

To clarify the field identifications, we have calculated all p operatorg19]. Furthermore, in Appendix F we present

three-point functions along closed boundaries, where at 'ea%f[simple argument, based on general CFT principles, and not

one of the heights is the unit height. Some of our results argy any detailed calculations, that the height variables must
2(37-8)3 have different field identifications in the bulk.

f(1,1,9) = 750X — %) 2% — Xa) 2% — Xa)? *ty We have not been able to calculate three-point correlation
R functions that have no unit height variables. The basic prob-
8( - 3)(3m— ) lem is with the anomalous diagrams that arise when we con-
f(1,1,2=-— il 5 il 5 5 (17 vert from nonlocal arrow diagrams to local arrow diagrams
(X1 = X2) (X1 = X3) (X2 = Xa) (as in Appendix B. The trick shown in Fig. 6, for evaluating
) the resultant closed loop diagrams, does not work for these
(3m-8) three-point functions. We note that if we use the conjecture
T 3 st (18 d in Sec. \i.e., ignore th |
Xy = X3)3(Xp = X3) proposed in Sec. \i.e., ignore the anomalous graphwe
obtain
f(1,2.9=- A(37—8)(— 572+ 39— 72) f(2.2.2 (24 - 5m)(- 576 + 3847 — 617°)
14 6 2 2 2 2,2 =—
(X1~ X2) (Xg — X3) (X2 — Xg) ¢ 4776()(1 - X2)2(Xl - x3)2(x2 - X3)2
3m-8)(24-7
Gr-8@4-7mm o (23

5y — 3w — w3
21 (%1 = %) "% = X3) (and other three-point functions consistent with the require-

Other three-point correlation functions, calculated withment that all three height probabilities must sum to 1 at any
the same methods, are listed in Appendix D. They are alfite). This correlation function is consistent with the field
consistent with the requirement that the three height probidentification in Eq.(21), providing support for our conjec-
abilities must sum to 1 at any site, and permutation symmeture.
try, thus providing a check on our calculations.
ryWe aggin get g number of anomalous grafrkiative to a Vil DISSIPATIVE DEFECT SITES: GENERAL
naive approach and as stated in the previous section, again We now consider the effects of dissipative defects on the
find that all anomalous graphs cancel in the universalASM. Generally, at sites in the bulk, or along closed bound-
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aries, the number of grains is conserved at each topplingisually not an issue, since in most cases we are concerned
Usually, it is only at open boundaries that the number ofwith differences in Green functions. However, here the di-
grains is not conserved; there, of the four grains toppledyergence of all theG, terms makes Eq(25) unwieldy, al-
three grains are sent to neighbors, while the remaining graithough technically correciEquation(25) can be used in the
goes off the edge of the sandpile, to the root. open case without modificatignwe work in a limit where

Some dissipation(i.e., sites where topplings remove the distances betweenj, andd, while possibly large, are all
grains from the sandpilés necessary for the sandpile model mych less tharl. In this limit, dropping terms of order
to be well defined, since otherwise we would end up with1 /(in L), Eq. (25) becomes

states where the topplings never terminated. Nevertheless,

dissipation often plays a minor role in analysis of the sand- G(i,]) = Gyfi,]) = Goli,d) - Gy(d,]) + Go(d,d).  (26)

pile, because properties are often studied in the bulk of the o )

ASM, with the dissipative sites along the open boundariedNote that Eq.(26) is independent ok. This makes sense,

infinitely far away. since in the bulk, or along a closed boundary, spanning trees
Some previous studies have investigated the effect of addiave to travel far to reach the root. But with Ehe defect given

ing dissipation throughout the bulk of the ASM. Instead ofby Eq.(25), k bonds are added from the defektto the root.

having bulk sites topple when their height is greater than 4Adding a dissipative defect provides such an “easy” way to

they topple when their height is greater thankdtk>0). reach the root, that with high probabilifprobability 1 as

Then, one grain is sent to each of the four neighbors,kand L — =), all nearby points will be predecessors of the dissipa-

grains are lost to the root. It has been shown, both numeritive defect, regardless of the valuelofThe set of spanning

cally and analytically, that if this is done at all sites, the ASM trees will thus be the same, in the—o limit, for any k.

is taken off the critical point, and the power law correlationsNote also that the Green function in EQ6) no longer di-

are destroyed20-22. This happens even whdais infini-  verges ad — <, which is appropriate, as we are no longer

tesimal.(Although this modification to the ASM has its most O(L) from any dissipative sites.

obvious interpretation for integéy the theory can be given a

sensible interpretation for any_rational value kofSee[20] VIIl. DISSIPATIVE DEFECT SITES: CLOSED AND BULK

for details) More recently, Mahieu and Ruelle have demon- CASES

strated the precise manner in which dissipation throughout

the bulk takes the ASM off the critical point. They found that ~ Surprisingly, it turns out that a dissipative defect, either in

the dissipation has exactly the same effect on correlatiothe bulk or on or near a closed boundary, has no effect on

functions of weakly allowed cluster variables, as adding theany weakly allowed cluster variables in the ASM. Weakly

integral of the dimension 0 variabl@pg, to thec=-2 CFT  allowed cluster variables are height configurations that result

[15]. Adding dissipation along a line has been shown to splitn & Subconfiguration that contains a FSC if any height in the
the ASM into two separate half planes, each with operfonfiguration is reduced by ori@6]. Examples of weakly
boundary condition§23]. allowed cluster variables are a single height one variable, or
Here, we consider the effect of adding dissipation at only2 height one adjacent to a height two. Such variables can be
a single defect site. Then, the methods of Majumdar angalculated with the Majumdar-Dhar method by the removal
Dhar still work, but we need to use a modified lattice GreerPf @ set of bonds in the ASM or spanning tree. We note that
function. If k grains of sand are dissipated at the lattice po-correlations of weakly allowed cluster variablsich as all
sition d. then we callk the “strength” of the defect. The correlations of the unit height variablare also weakly al-

. L - lowed cluster variables.
toppling matrix is then changed from the defect-free toppling Probabilities of weakly allowed cluster variables can be
matrix Ag to

calculated as délt+BG), as in Sec. Il. To analyze the effects
= Ao+ K g0 g (24)  of the defect, we want to consider the effect of modifying the
Green function from the defect-free Green funct®gto the
Green function in Eq(26), for a fixed matrixB (i.e., for a
r%pecific weakly allowed cluster variable
In general, for local arrow restrictions, each row Bf
S R k - O must sum to zero, because if the restrictions on the spanning
G(i.1) = Goll.]) 1 +KGy(d.d) Coll, DGo(d.}). (29 trees prevent an arrow frofrto j, thenB;; goes down by 1,
o while Bjj goes up by 1[For example, for the height one
This holds for any value ok, and regardless of the location variable, the matriX8 in Eq. (2) arises from the restriction
of thg defect. Nevertheless_, the defect behaves very d'ﬁe'ihat no arrows can point froimto fb fz, or fsy nor from fl, fz,
ently in the open case, and in the closed and bulk cases. This - > . ;
is because the Green function between nearby lattice sites ® Js to I.] For the weakly aIIovxied 9c|uster variableB, is
O(1) near an open boundary, b@(InL) near a closed symmetric, sinceif thg arrow fromto j is forbidden, then so
boundary, or in the bulk24,25. L is the system size, or is the arrow fromj toi. So every column oB also sums to
more generally, is of the same order of magnitude as theero.
distance to the nearest open boundary. This divergence in the Since every row oB sums to zero, the parts &f that are
Green function ad — o for the closed and bulk cases is independent of the row index @& make no contribution to

The Green function is simply the inverse of the toppling
matrix, and is changed from the defect-free Green functio
Gy (described in Appendix Cto
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BG, and thus no contribution to the probability detBG).  ant field, 9996+ 3696 [15]. But they also noted that such an
And detl+BG)=de(1+GB), so since every column d8 identification appeared inconsistent with the fusion rules of
sums to zero, the parts @& that are independent of the the c=-2 CFT, which would indicate a different field iden-
column index also make no contribution to the probability.tification. The analysis here points strongly to the latter con-
The last three terms of E¢R6) all depend either only on the clusion, although the specific field identification in the bulk
row index, or only on the column index. So a dissipativeremains unresolved.
defect has no effect on any weakly allowed cluster probabili-
ties (either on one-point probabilities or on correlatipns IX. ALL n-POINT CORRELATIONS

As a special case, this means that the unit height probabil- ALONG OPEN BOUNDARIES: PART |
ity, and its correlations, are unaffected by closed or bulk
dissipative defects. However, the higher height variables are We have calculated alh-point correlations of all four
affected. Using the Green function in E&6), and the meth- height variables, along open boundaries, in the presence of
ods described in Sec. IV, we find that along a closed boundan arbitrary number of dissipative defects. We begin by dis-

ary, with a defect at the origin, we have the following heightcussing why this case is so tractatile contrast to the closed
probabilites atx;: case, where we have been unable to calculate the three-point

function of the height two variable
f(1) =0, (27) The heights of the correlation function are placed at
X1,X2, ««« Xn, @Nd definingiyp= X5~ X, = C4pX, we work in the
1 limit x— o, where thec,,'s are kept constant.
fe(2)=- 22 toe (28) As discussed in Sec. V, and Appendixes A and B, a num-
. ber of anomalous terms arise in the computation of correla-
tion functions. While the discussion in these sections focused
fu(3)= + 1 S (29) on closed boundary correlations, similar anomalous graphs
27X] arise in open boundary correlations. However, it turns out
We have numerically confirmed these results. These resulthat these anomalous graphs produce no contributions to the

. ) X .tt?niversal parts of any correlation functions, greatly simplify-
provide further evidence that the height two and three var|~Ing matters. We prove this claim in this section, and in the

ables have different field identifications along closed bound'next section look at the actual calculation of the correlation

aries. ;
X . . . ._functions.
Since the height two and three variables have dimension

volve “nearly closed” loops: the trees have paths that go
from the neighborhood off to the neighborhood of, and

from the neighborhood of to the neighborhood of. The
paths do not actually form closed loops, since no closed

e . . loops are allowed in spanning trees, but they do come very
Egs.(27)~(29); this situation requires further analysis. close (within one sitg. The reasons for this are general, so

In the bulk, we would also expect that the higher heightgiia siryctures will arise in all anomalous graphs, for all

probabilites would be affected by a defect site, and we have, o |ation functions. For example, the anomalous graphs in

confirmed th|§ with numencal simulations, although we haveFig' 4 arose because a long, nearly closed loop from one site
not proven this analytically.

could not be reversed in direction, if it passed through fixed

The fact that weakly allowed cluster variables have NO4rrows at the other sitesee Fig. 10 of Appendix B

correlations with bulk or closed defects provides compelling > >
evidence that weakly allowed cluster variables do not pro- !N the open case, these anomalous graphs betivaed

vide a complete picture of the sandpile model. This has pardWays fall off faster thai©(1/x%). This is in contrast to the
ticular bearing on the analysis of Mahieu and Ru¢ls). closed boundary case, where such diagrams dlvergg—see
They studied specific bulk correlations of the simplestEdS:(6)—(8). The difference results from the Green functions.
weakly allowed cluster variables, and developed a complet¥/hile the Green function diverges as(th along closed
field picture for these variables. They found tkattthe criti- ~ Poundaries, it decays as */along open boundariesee
cal poin} these variables are all linear combinations of threeAPPendix Q. Using Priezzhev's method, the matrix determi-
dimension two variablesﬂﬂ?§+30aa (mﬂ;’ and 303;, nant for evaluating any closed loop diagrams necessarily in-

strongly indicating that all weakly allowed cluster variablesVolves two Green functions, one fromto j, and another

are linear combinations of these three fields. However, thifrom j to i, giving an overall factor of 1#*. Furthermore,
analysis left the status of the height two variable unresolvedcalculating the diagrams requires two matrix determinants,
Mahieu and Ruelle pointed out that since the height twowvhich come with leading terms equal in magnitude, but op-
variable appears in a number of the weakly allowed clusteposite in sign—see Fig. 6. TH®(1/x* parts of the closed
variables, it might be expected that the height two variabldoop diagrams thus cancel along open boundaries. So the
would also be a linear combination of these three fields, oanomalous graphs for the two-point functions automatically
more specifically, proportional to the sole rotationally invari- fall off faster thanO(1/x*), and do not need to be considered

integral of the dimension zero operaté?[lS]. However,

the correlation o with the height two and three operators
in Egs. (21) and (22) does not produce the correlations in
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when calculating leading-order, universal parts of correlatiorgous to the diagrams in Fig. 2, but for the open case Nypd
functions. is the total number of possible local arrow diagrams at a
By this logic, for anyn-point open boundary correlations, single site(see[16] for the list of diagrams D is a constant
any anomalous graphs must have terms that decay @g 1/ matrix expressing height probabilities in terms of local arrow
—Xp)P, wherep=5, for somea,be1,2,... n. Aside from  diagrams, for one-point functions, and wisplicitly ) found
the sites ak, andx,, there aregn-2) other sites that need to jn [16]. Each correlation of local arrow diagrams can now be
appear in the connected correlation function. Each brings aalculated with the Majumdar-Dhar method.
new Green function, 0©(1/x?), so the overall contribution
of any anomalous graph must decay at least as fast
O(1/x*+n=2))=O(1/x?"*1). But we will see in the next sec- : , < _
tion that all n-point correlations decay to leading order asmatrix for the sites around B, andG,, are both associated
1/x?". So the anomalous graphs have no effect on the unienly with sites in the vicinity ofi. p,=de(l+B,G,,) gives
versal parts of any-point correlation functions. The conjec- the one-point probability for the local arrow diagrerg,,.
ture at the end of Sec. V has thus been proven for all opehe two-point correlation of local arrow diagramgandu,
boundary correlations. is given by detl +BG), whereB is block diagonal, withul
andB,,, along the block diagonal, ar@ is made of the four
matrix blocks Gy, Gy,u, Gu,,, and Gy,,. Mahieu and
Ruelle found that the leading-order contribution to thek

Since we can ignore the anomalous graphs for opefyg-point probability is given by15]
boundary correlation functions, no error is introduced by

writing the height probability at each site as a linear combi-
nation of local arrow diagrams, independently using at each

If a sitei has local arrow constraints we express those
Fonstraints by a matriB,, and letG,, be the Green function

X. ALL n-POINT CORRELATIONS ALONG OPEN
BOUNDARIES: PART Il

site the linear relationships derived for the one-point func- I
tions. Defining the open boundary correlatidy, analo- det(]I+BG):—pu1pu2Tr mBuleullJz
gously tof, for the closed casgEq. (12)], we then have up 2 ugly
Nioc Nioc Nioc X 1 B G (31)
fop(alaazy tee 1an) = 2 2 e E DalulDa2u2 T Danun I+ BuZGuzuz R

umlu=l  uel
X <L0p,u1(xl) Lop,uz(xz) T Lop,un(xn)>-

(30 Similarly, they found that the bulk, leading-order, contribu-
EachLop,uf(xf) represents a local arrow diagramxatanalo-  tion to the three-point probability is given by

I I I
de(l+BG) = PulpuzpusTf{ mBulGuluszuzGuzusmBusGusul}

1 I I
+ pulpuzpusTr m B“le uwrsm BUSG usuzm B“ZG uzul} . (32

UgUg

[Equations(31) and(32) are written in a different form from cays asO(1/x?"). The open boundary Green functi¢Ap-

the expressions ifil5], but are equivalen. pendix Q between(x;,y,) and(X,,Y,) is

The derivation if 15] of Eq. (31) in the bulk relied on the
fact that the leading-order contribution to the two-point func- Gop o X1, Y1 X0, V) = w - (33)
tion comes from the pieces of det BG) with two terms off . (X = Xo)

the block diagonali.e., one term fromG, ,, and one term  pere x |abels distance along the boundary, anidbels dis-

from G, ). Similarly, the derivation of Eq(32) was based tance from the boundarthe boundary is ag=0). Since the

on the fact that the leading-order, connected, contribution t@reen function decays as>#/ we can only have terms off

the three-point function comes from the terms of (et the block diagonal. Furthermore, to get a connected correla-

+BG) with three terms off the block diagonal. tion function, we must have exactly one term off the block
The trace formulas can be extended for all higher-ordediagonal in every block row and in every block column. This

correlations for the open case. We will see that the leadingallows us to generalize Eq&81) and(32) for open boundary

order contribution to the open boundanpoint function de-  n-point functions; they generalize in the obvious manner,

036153-10
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with (n—1)! trace terms for th@-point function, correspond-
ing to the(n—-1)! ways that we can loop through timeposi-
tions.

Equation(33) shows that each off-diagonal blo€k,, fac-
torizes into the product of a column vector and row vector:

1
2hufhjg, (34)

5" (X = Xg)

Gufu

where huf is a column vector of heighy+1 of the sites
aroundx; in Loy (X)—i.e., thepth entry ofh, is the value
of y+1 for the pth site of Lop,uf(xf). Substituting this in the
generalization of Eq931) and(32), and using the cyclicity
of the trace, each of thén—1)! matrix traces becomes a
product ofn 1X 1 matrices. Furthermore, tHe-1)! traces
differ from each other only in the 1)(f—xg)2 terms chosen.

PHYSICAL REVIEW E 71, 036153(2009

<¢al(xl) ¢a2(x2) T d’an(xn» =de(M ) (40)
For n=2, this reproduces the open boundary one- and two-
point functions found irf16].

detM) is the same as the-point function of —:BaaE o)
up to rescaling factorg-2K,’s), all four height variables are

represented by6df along open boundaries. This is rather
surprising, given that we have seen that the height variables
are represented by different operators along closed bound-
aries[Egs.(20—(22)]. In CFT'’s, boundary operators are de-
rived from OPE’s of bulk operators—so the fact that the
height operators are different along closed boundaries proves
that they must be different in the bulk, but apparently these
different bulk operators become identical along open bound-
aries.

We nowhere used the fact that these were the local arrow

The leading-order, connected part of the correlation funCtiOjSagrams associated with the height variables. So, in fact, we

of n local arrow diagrams is then found to be

<Lop,ul(xl)|-0p,u2(x2) te Lop,un(xn)> = (fl_[ kuf) detM..
=1

(395
M is defined as th@ X n matrix
M. = 0 if f=g, (36)
T | Ux - xp)? if g,
and thek, are simply numbers:
— L el +B,Gy) | NT———Bh 37
ku_ﬂ_ et( u uu) qu+BuGuu uu - ( )

Inserting this into Eq.(30) gives all open boundary

have shown thaall local arrow diagrams along open bound-

aries are represented 3go6.

We have also found the correlation function ofunit
height variables alonglosedboundaries. This requires local
arrow constraints atr8vertices of the ASM, and thus the
calculation of a B-dimensional matrix determinant. The ma-
trix is divided into 3X 3 block submatrices, such that the
diagonal blocks are all identical, and the off-diagonal blocks
all have the same form. A rotation makes the matrix diagonal
in two out of every three row&nd columng The universal
part of the correlation function is thus found to be

[

This confirms the field identification in E§20).

37—8
)

)n detM . (41)

n-point correlations. To express our results in a simpler man-

ner, we define

Sh,a~ Pa,
Pa(X) = 2 2% \wherea= 1,...,4. (38)
Ka
We have defined the following constants:
_9_42 320 512 ~__3 80 512
Pron™5 " T 32 T 9 T T T 32 o
__33,66_160 1024 | 9 200 1024
P2.0p= 4 T o 97’ 2T n 37 978
_15_22 160 512 | 7 40 512
p3’0p_4 T 37 9n° T a2 97’
2 1
Pa,op= 1-— Ky=—. (39
a a

Pa,op iS the probability for a site along an open boundary to

have height, and theK, are normalization factors. We then,
finally, have

Xl. n-POINT CORRELATIONS ALONG OPEN
BOUNDARIES, WITH DISSIPATIVE DEFECTS

Along open boundaries, the defect-free Green function
Gp=Ggp,0does not diverge ds— e, so for a single dissipa-
tive defect we can modify the Green function as in EXp).
Using this new Green function, the open height probabilities

at (x4, 0), for a defect of strengtk at d=(0,y) are

k(y + 1)? 1
y+1) =, a=1,2,3,4.(42)

"1 +KGgp o d,d)] X1

fop(a) =-K

The sameK, factors that we saw in the height-height corre-
lations appear in height-defect correlations.

We define an operatoﬁs;k(a), corresponding to the addi-

tion of a defect of strengtk at&:(x,y), and then multipli-
cation of all correlation functions by a normalization factor

71 +KGyp dd,d)]
k(y + 1)

(43

Then Eq.(42) becomes
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~ 1 444444444414
<¢a(X1)¢5;k(Xz)>—-m’ a#>s. (44) 33[i]2 2 2 2[j]3 3

¢sy acts just like any of the four height variables in two-
point correlation$Eq. (44) is Eq.(40) with n=2]. In fact, we
find that ¢s acts like ¢y, ¢, b3, ande, in all higher-order
correlation functions, containing multiple height variables1/x? term from the Green function t¢or from) the defect
and multiple dissipative defects. [Eq. (33)].

Suppose we are calculating a correlation function with ~ So, in the end, the correlation function ofheight vari-
height variables, andh dissipative defects. The dissipative ables on the boundary anu defect sites near or on the
defects are aﬁW:(Xw,yw), and have strengtk,, 1<w<m. boundary, is given by thém+n)-dimensional matrix deter-

As with the height locations, the, coordinates of the de- Minant detM) (with appropriate normalization factorshis
fects all scale with the same factar where x— . The shows that dissipative defect sites along or near open bound-

FIG. 7. State not in ang, and in multiplez“k,.

change in the toppling matribddA=A-A,, is aries are, like the height variables, representeddng.
... Note that a dissipative defect has a much larger effect
SA- = {kw ifi=j=d,, 1sw=m, (45) along a closed boundary than along an open one. A defect is
" lo otherwise. represented by a dimension zero operator along a closed

boundary, but by a dimension two operator along an open
The Green function is modified from its defect-free valuepoundary. This makes sense; along open boundaries, grains
Gopoto are already dissipated by topplings, so adding a little more

dissipation has only minor effects, compared to dissipation

I I G -
G=—= = MO S G (—(5A)G. )P, Onaclosed boundary.
A7 A+ A T+ (84)Ggpo pz;) opd~ (9A)Gopo)
(46) ACKNOWLEDGMENTS
G(f, j) can be represented as a trip froro i, where along We were recently informed of independent calculations of

the trip, the traveler can visit any of the defect sites as oftedEds. (17)~(19), in the massive case, by Piroux and Ruelle
as he or she wishes, each time picking up a factor of27]. Discussions with Piroux and Ruelle then led us to the

~(8A)Gopo field identifications in Eqs(21) and (22), and they further
We have already seen that the defect-free correlatioforrected an error we had made in these same equations.
function ofn height variables has a leading term@®(L/x2"). This wqu was supported by Sc_)uthern lllinois Umversﬁy Ed-
If we instead use the Green function with defects, each trip tgvardsville. We thank V. Gurarie and E. V. Ivashkevich for
a defect introduces a factor of #/[see Eq(33)]. In a con-  useful discussions.
nected function, we should visit each defect at least once; in
the leading term, each defect will be visiteq from. a distant APPENDIX A: ANOMALOUS GRAPHS IN BOUNDARY
site exactly once, and the correlation function will have a TWO-POINT CORRELATIONS: PART |
leading term ofO(1/x2M™m),

After visiting aw, we may travel repeatedly fronﬁl},V to aw
without picking up extra factors of k. This produces a
contribution to Eq.(46) of

In this section we discuss what we call anomalous graphs
of the first kind, which arise when converting from ASM
height probabilities to spanning tree probabilities. As stated
in Sec. V, it would be natural to expect, based on analogy

* .. 1 with the one-point height probabilities, for the two-point
> [~ kyGo(dy, ) P = ———————. (47) height probabilities to be given by E¢5). However, this
p=0 1 +kyGo(dy,dy) turns out to not be the case. Let us carefully consider how

[We already saw this factor for a single dissipative defect, Hﬂelght correlations can be turned into spanning tree prob-

Eq. (25).] Furthermore, inspection of E¢®3) shows that the abilities. We focus on the closed two-point correlations; other
) ' - cases are similar.

visit to the defect atd, from another site will result in a . > > . .

factor of k,(y,+1)2/ . With Eq. (47), this motivates the For correlations _betweelnandj, I\_/ashkewch divided the

normalizationwfactor in Eq43) ' states of the ASM into setS,, consisting of states allowed
Equation (43) normalizes the correlation function of whenhi=k andhj=1, but fo_rbldden otherwis¢16]. How-

height variables andh defects. To see that the form of the ever, not all ASM states fall into one of these sets. There are

correlation function is still déM), expand the determinant (srt]?tres_t(gatl) arg tallfomge_g q Wheﬂ;]iﬁ’ hf();(#)z—),(la?)q t"r‘]’he”
out into cycles. The connected part of the determinant in Eq.. '* 7 ™\ =» ut forbidden whenih,hj=1.,1, these

(40) is a sum of closed cycles of length where each cycle st.ates do not belong to any sgt. One such state is shown in
visits each of the position;, 0) exactly once, and picks up Fig. 7. o _ - o

a factor of 1(Xf_xg)2 when it travels fromxf to Xg- After We find it convenient to deﬂnSKh ConS|St|ng_)0f AS_M
normalizing, the defects have exactly the same effect as thigeight configurations on the sandpilexcluding iand j,
height variables—each trip t@r from) a defect results in a which are allowed when we addi, hj)=(k, ), but both for-
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1S4 = [S12. N Sl = X = [Xa| = X, (A2)
For states inX, setting(hi,h;)=(1,1) produces a MFSC.
(Note that we have defined the MFSC as the maximal FSC

produced when the heights at b¢tandfare simultaneously
set to one; if only one height was set to one, then the largest
FSC might be smaller, or there might be no FSC aj dlhe
setX can be partitioned into the following disjoint subsets,
FIG. 8. Venn diagram in the space of states whéighj)  depending on the shape of the MFSG; the MFSC consists

=(2,2) is allowed, but(hy, h)=(1,1) is not. of disjoint subsets around and f Xg, the MFSC is con-
nected, with=2 neighbors of and exactly 1 neighbor q?,
Xc, the MFSC is connected, witk=2 neighbors off and
exactly 1 neighbor oif; andXp, the MFSC is connected, with

bidden when we addhj,hj)=(k-1,l), and also forbidden
when we add(h;,hj)=(k,I-1). Note that when counting

states, the fact that we do not specify the height§ axﬁdf . . . -
exactly 1 neighbor of and exactly 1 neighbor gf

introduces a n:ultlpllfatlve factor; for exampleS] X, and X, can be partitioned into analogously defined
=|S1d/(3+2) for i and ] both on a closed boundary. Now, subsetsX;a, Xqp, €tc. So, for exampleX,p is the subset of
every state must be in at least one of the &jsbut some X, such that(h,,h) (1,2 is allowed. (Note thatX,c=@
states are in severSlds For example, the state in Fig. 7 is andX;p=9.) We want
in both 812 and 821.

No anomalous graphs arise for two-point correlations in- 2 (Xd = [Xad = X (A3)
volving at least one unit height variable, since in those cases ke{AB.CD}

the relevantS sets do not intersect. The number of statesOur “naive” guess would be that this would equal the set of
wherei has height one anfihas height is =f_,[S,|. Fur-  states where NNRNNPj=1. We carefully count the states,
thermore, the representation 8, is exactly what we would ~€omparing with this guess. _
expect; it corresponds to the number of spanning trees where Xa» aftér subtracting off the states froiy, and Xaa, is
NNP=0 and NNP=h-1. So no anomalous graphs arise equal to one-fourth the number of spanning trees for which
when the two- p0|nt correlation has at least one unit he|ghand] each have one NNP, ar{d»UTree does not border or

variable. _ _ intersect{j} U Treg. (The one- -fourth comes from the fact
Things get more complicated when both heights areth tth ¢ ¢ di tout T
higher heights. We discuss in detail the 2¥&ight two— at the spanning tree arrows rdran J can point out from

height twg correlation along a closed boundary; the analysis the MFSC in any direction.Tre¢ refers to the set of sites
for the other two-point correlations is similar. that are predecessors iofThe condition thafi}U Treg and
If i and] both have height two, we must be in at least onelj}U Treg cannot border each other comes from the condi-
Sd, for k<2, 1<2. 312 and 321 intersect, so the number of tion that the MFSC consist of disjoint subsets arouaddj
2-2 states is We now considerXg. The MFSC generated when
(hi,hj)=(1,1) must still be a MFSC wheth;,hj)=(2,1). So
|~311| +|~Slz|+|~321| +(|§zz|—|~312ﬂ~321|)- (A1) (hi,hj)=(2,2)—(2,1) produces a MFSC that includes ex-
] actly one neighbor oi the S|te| and at least two of’s
The first three terms all have the “natural” spanning treeneighbors. Just as in Sec. Ill, this is equivalent to a modified
representation. The difficulty is in evaluatingS,]  ASM, where bonds along the border of the MFSC are re-
—|~Slgﬂ~sﬂ| ~822 counts states wheréh;,hj)=(2,2) is al- moved(except for one bond of). In Eq. (A3), X,z=3, but
lowed, but neither(h;,h;)=(1,2) nor (h,,h) (2,1) are al- we do need to subtract off statesXgg. To do this we only
lowed. In Fig. 8, we have started with a large rectanglecount the states okg such that(h,hj)=(1,2) is forbidden,
representing the the set of states wheteh))=(2,2) is al- which implies thathy=2— 1 should produce a new, smaller
lowed, and(h;, hj)=(1,1) is forbidden—we call this sext. In FSC, completely contained within the larger MFSC. We then
the rectangle are two subsets, corresponding to regioree thatXg|—[Xyg|—[Xzg| corresponds to one-fourth of all
where(hi,hj)=(1,2) is allowed, and wheréh;,hj)=(2,1) is spanmng trees where NINPNNP;=1, and either e Treg or
allowed—we call these two sets; and X,. In this Venn | porders Treg with one exceptianThe exception occurs
diagram, 822 is the diagonally shaded region outside thebecause the MFSC, by construction, can only have one
circles, andS;,N'S, is the cross-hatched intersection of the neighbor of j. So |XB|_|XlB|_|X2B| will not count cases
two circles. Looking at the Venn diagram, we see that to findyhere NNP=NNP=1, i borders Trep and j borders
(S50~ [S1,N'S,], we start with the seX, and then subtract off Tree—this case is shown in Fig. 3. We label this set of
the states irX; and X, independentlyBy independently we graphs ag. Sincec has NNP=NNP;=1, it would be natural

mean that states in the intersection Xf and X, get sub- to expect it to appear in the spanning trees contributing to the
tracted off twice. So height two—height two correlation function. However, since
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no MFSC's ofX have two neighbors dfand two neighbors

of f graphc does not appear iX: or Xy either.
The analysis foiXc is identical to that forXg, and|X¢|
—|X1c|=|X,c| counts one-fourth the spanning trees where

NNP=NNP;=1, and eitherj»e Treg or f borders Treg ex-

cept that, again, the spanning treescadre excluded. FIG. 9. Correlations wherg; # .
In Xp, the MFSC has only one neighbor ofand one
neighbor of j. The one-to-one mapping betweé&, and Lna=2(2Lc1—2lco+Les) +Lca (B4)

spannipg tree states posesses some subtleties, but the _EfHdone-point functions8,= B, and é,=d,, so N, and N
result is what one would expect: The number of_states INimply becomeLy, and Lys, which are local, and whose
[Xp|=[X1p|=[Xzp] is one-fourth the number of spanning trees gy e ctation values can be found with the Majumdar-Dhar
where NNP=NNP/=1, and Trepand Treg border each meihod, as discussed in Sec. (These are the same rela-
other, buti ¢ Treg andj ¢ Tre€. tions found in[16].)

In the end, we see tha([&,,] -[S,,N'S,|) is equal to the It would be simplest if in correlations of/, and N3, we
number of spanning trees where NRRINP/=1, except for ~ could replace\, and N3 with Ly, andLygs, since local cor-
the setc, which contains all spanning trees where both relation functions are easily calculated. As in the previous

> . appendix, we call this approach “naive”—this naive ap-
borders Trepand j porde_rs Treg ¢ consists of the anoma- proach does not quite work, and we call the deviations of the
lous graphs of the first kind.

. . , . ___correct answers from the naive approach “anomalous graphs
A similar analysis for other closed correlation functions

) : . ; of the second kind.”
shows f[hat the spanning trees drcontribute to the height We no longer haves, =8, and ¢, =&, in correlations of
two—height three correlation, and get subtracted from the . . . >
height three—height three correlatigrelative to a “naive” No apd N3, because in c9rrelat|ons between distant sites
approach These changes are necessary for the height protgnd]j, switching arrows at can affect predecessor relation-
abilities to all sum to 1, so this provides a check on ourships atj. To analyze the€B;-3,) terms in Egqs(B1) and
mapping between ASM states and spanning tree states. In tliB2), consider the configuration in Fig. 9, where we have not

next appendix, we consider yet another complication thagpecified the direction of the arrow fromif the arrow from

arises in the calculation of the two-point functions. s > > -
i points toi,, thenj, is not a predecessor ¢f so the con-

figuration atf is v. And if the arrow fromi’ points toi;, then
fl is a predecessor q'»f so the configuration ef( is ¢,. So
switching fromp; to B, at i can affect whether the configu-
We saw in the previous appendix that H§) does not ration atj is ¢, or y. However, this inequivalence between
quite hold, but is only off by the anomalous graphSo g, and 3, turns out to have no effect on any correlation
except for this complication, the two-point height correla-functions, to any order, sincg, and y always appear in the
tions can be turned into linear combinations of probabilitiescombinationg,+y, in Ly, andLys, and ¢,+y has no corre-
for spanning trees with nonlocal conditions on NN#d  |ations with 8; - B,.
NNP;. As in the previous appendix, we discuss only the unfortunately, things become more complicated with the
closed boundary two-point functions; other cases are similaig, and ¢, terms. If the long path of, avoids arrow restric-
As discussed in Sec. IV, we can write the probabilify  tions at other sites, the long path can be reversed ganll
to have NNP=h-1 as a linear combination of nonlocal ar- pe equivalent tap,. However, if the long path goes through
row diagrams, which we can then rewrite as follofg®e  arrow restrictions at other sites of the correlation function,
Figs. 1 and 2 then ¢, will not be equivalent tog,. Figure 10 compares
_ diagrams that arise ifi¢y, ;) correlations, with diagrams
N =21+ o+ ) that arise in(¢,, ¢,) correlations. Three of the four diagrams
=2(-Le1+ 3Lt Lea) +4(BL—Bo) + 21— ), shown (labeled witha’s) are equivalent, but the fourth one
(B1) (labeled withb) is not. The resultant anomalous graphs of the
second kind were shown and discussed earlier, in Sése®
Fig. 4. When all the correlations of thep,— ¢,)’s in Egs.

APPENDIX B: ANOMALOUS GRAPHS IN BOUNDARY
TWO-POINT CORRELATIONS: PART I

N3=2p1+ P+ €+

=22l 2ot Les) +Lea— 4B~ B2) — 2pr— o).
(B2) @1%@ &@

. . . aterm aterm
These relationships hold regardless of the correlation func-
tions thati are in. We define operators corresponding to the PP @ &@—\\Pﬂ
local parts of these terms: aterm b term
Lne=2(=Lg1+3Lco+Lea), (B3) FIG. 10. Correlations where, # ¢,.
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(B1) and (B2) are considered, we find the following for ences in Green functions. For larggy this has the expan-
closed boundary correlations: sion[24]

N2ANNA0)) = (Lna(r)Lnz(0)) + 4(a=b),  (B5) In8

- 1 - y
Go®F) =~ o= INGE+7A) - L =7+, (C2)

N2DN3(0) = (Lna(Lns(0)) — 4@=b),  (BO) oo y=0.577 21... is the Euler-Mascheroni constant. For

sites(x4,Yy;) and(X,,y,) near an open boundary, whexds
(N3(NN3(0)) = (Lns(r)Lns(0)) + 4(a=b). (B7)  the coordinate along the boundary, anig the distance from

The correlations involving the height one variable are unaf{h® boundarylocated aty=0), the Green function i§25]

fected by these complications. Gop,dXeY1:%2,Y2) = Gol(Xy = %2,¥1 — ¥2)
To summarize, naively transforming from nonlocal arrow ’
diagrams to local arrow diagrantsdependentlyt every site ~Go(X1=X2,y1+Y2+2). (C3

of a two-point correlation results in anomalous graptend Along closed boundaries, it {25]
b. ’
Ge,0(X1,Y1:%2,Y2) = Go(X1 = X2, Y1~ ¥2)

APPENDIX C: GREEN FUNCTIONS +Go(Xy =X, Y1 +Y2+1).  (C4)

The minus sign between the Green functions in EgR)
cancels out divergences in the Green function. The expansion
of the Green function for points along the boundary has al-

The inverse of the bulk toppling matrik, is the lattice
Green function, which has long been kno{24]. It is given

b
y o ready been calculate®5], and can be extended to points
— _ (" dp, (*" dp, gPrx+ip5y near the boundary, but far from each otigi=0(1), y,
Go(%.y) = o o o Z4—2005p1—2005p2' =0(1), |>_<1—x2|—>oo], by the recursion relationship§yA,
=I. We find
(CY
o o _ _ _ i+ D(y2+1)
This integral is divergent, producing terms of orderL|n Gop(Xl,Y1,X2,Y2)—W+'“ (CH
whereL is the system size, but these divergences are usually LT R
unimportant, since we are typically concerned with differ-and
|
1 y 3In2
Gelxa, Y1 % Y2) = = — In[xy = %] = (7—7 o ) —[Bya(ys + 1)+ 3y,(y, + 1) + 1]m
5 5 17 1
Yyt DIy = D +yalyz + Dz +y2 = D+ 6ya(ya+ Dyaly2 +1) = py—_Y +
(C6)

APPENDIX D: MORE CLOSED BOUNDARY 47— 3)(m+8)(3m—8)
CORRELATION FUNCTIONS f(1,2,3 =

70(Xq = %) 2(X1 — Xg)*(Xp = X3)°

Here we list the three-point correlation functions along (37 -8)? (37— 8)(24 - 7m)
closed boundaries that were not stated in Sec. VI. As a check,
the correlation functions in this appendix were found by the
methods already described in Secs. V and VI. However, they (D2)
can all also be determined from those already listed in Sec.
VI, from the requirement that the three height probabilities

- (X~ X2)3(X2 - X3)3 B 27°(xy — X2)3(X1 - X3)3 ’

must sum at all sites, and by symmetry. They are listed here 37— 8)(4 —7)(8 +
only for reference, and because they provide checks on our f(1,3,3=— @ 2)( 77)(2 ™ >
calculations. We find (X = %) Xy = Xg) (X = X3)
B37-8)(8-m)
B 2(4 - m)(3m - 8)2 27(Xy = X2)3(Xg = X3)° (b9
fe(1,1,3 =~ 6 2 2 2
(X = X2) A(Xq = Xg)“(X2 = X3)
(3m-8)* Fooe, (D1) We can now check that(1,1,)+f,(1,1,2+f,(1,1,3=0,

(X = X3)3(Xp — Xg)® as it must. Interchanging, andx; in fo(1,1,2 gives
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8(m - 3)(37 - 8)? While boundary conformal field theories are generally
fo(1,2,9=- B(Xg — X0)2(Xy = Xa)2(Xp — Xg)?2 well understood[19,28, boundary logarithmic conformal
T TR TR 2 T field theories possess a number of subtleties that are not well
(3m-8)° . (D4) understood. Results on boundary LCFT are still to some de-

B (X) = X)3(X3 = X0)2 ) gree contradictory29-34. However, basic results from non-
logarithmic boundary CFT should still be expected to apply.

We can then check thdt(1,1,)+fc(1,2,9)+f(1,3,D=0. | particular, just as for nonlogarithmic boundary CFT’s, as

Three-point correlation functions with no unit height vari- hylk operators are moved near a boundary, their antiholo-

ablescannotbe found with the methods in this paper, asmorphic pieces should behave like holomorphic pieces at
already discussed in Sec. VI. However, if we use the conjecmjrror locations across the bounddn®,30.

ture proposed in Sec. V, of dropping the anomalous graphs

[as we did to obtain Eq23)], we now obtain APPENDIX F: A PROOF THAT THE HEIGHT VARIABLES
f(2.2,39= (24 - 5m)(- 192 + 112r - 1379 HAVE DIFFERENT BULK FIELD IDENTIFICATIONS
T 4m%(xy = X0)H(%1 — X9) (%o = Xg)? The correlation functions in Eqs(13—(15), Egs.

(17—19), and Eqgs.(27)—(29) show conclusively that the

(37— 8)(7m - 24) " (D5) three height variables are represented by different operators

2m(%; ~ %g)* (% — X3)°® along closed boundaries. As already discussed, since bound-
ary operators are derived from OPE’s of bulk operators, this
(8 +m) (- 192 + 112r - 1379 proves that the height variables must be represented by dif-
fe(2,3,3=- 45(xq — %) 2(Xq — Xa)2(Xp — Xa)2 ferent operators in the bulk as wgll9]. However, it is worth
noting that this conclusion can be reached with a simple
_ (Bm-8@B-m (De)  argument, based on general principles of conformal field
27°(Xy — %) 3(Xg — Xg)° ’ theory, without doing any detailed calculations.
Suppose that all four height variables were represented
(8 + ) (64 — 327 + 72 (up to multiplicative factorsby the same field operator. The
f«(3,3,3=- unit height variable is known, from its two-point correlation,

6y — v 2w — v 2w —w 2
AT (X = %)X = X3) (X2 = X3) to have dimension tw14], so, by our assumption, all four

(D7) height variables would have scaling dimension two. The

As with the other correlation functions in this section, theseheight probabilities get modified from their bulk valugs,

agree with the requirements that the three height probabiligh:1’2’3’4 near a boundaryclosed or open Then one-

ties must sum to 1 at all sites, and with the field 'dent'f'ca-pOint function_s of operators of dimensiahwill dec_ay as
t:ons irl1J Eqsl,J.(ZO)—(ZZ). I w el . 1/y9, wherey is the distance from the boundary, athis the

operator dimensioh28,30.

APPENDIX E: THE c=-2 CONFORMAL FIELD THEORY Ch
Pr(Y) =Pgn+ S+ -+, (F1)

The central charge -2 conformal field theory is perhaps y
the simplest known logarithmic conformal field theory. for some constants;. If the fields are normalize¢to have
While the theory has a simple underlying Gaussian structurezero expectation value and coeficient -1 in two-point corre-
it still possesses a number of subtle features. We use thgtiong, then general CFT principles predict that the coeffi-
formulation of thec=-2 CFT where the action is given by cients of the 1y? terms should be universal numbers, de-
f . pending only on the field and the boundary condifi28]; in

06 46.

1
s==
T

(E1) particular, they should be independentofSo upon normal-
izing the height variables, the differeqt should all become

‘¢, a number independent bf Since we are assuming that all
NS . o ! : four height variables are represented by the same field, the
derivatives—that is, the derivatives with respecz&x+y 1-1, 2-2, 3-3, and 4-4 correlations should all have the same

andz=x-ly. ¢ and ¢ are anticommuting Grassmannian vari- gign (negative, so this normalization should not change the
ables. The action has zero modes, which make the partltlogigns of the coefficients, and all thg’s should have the
function zero. If we normalize the action by not integrating g5 me sign a&. However, we nee(‘r:ﬁ_lchzo for the four
over the zero modes, we get Wick contraction rules, withhejght probabilites to sum to 1, so thgcannot all have the

each contraction betweefi(z;) and 6(z,) giving a factor of  same sign. By contradiction, the four height variables must
-In(z,-2,). be represented by different fields in the bulk.

9 and d refer to the holomorphic and antiholomorphic
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