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We analyze the two-dimensional Abelian sandpile model, and demonstrate that the four height variables
have different field identifications in the bulk, and along closed boundaries, but become identical, up to
rescaling, along open boundaries. We consider two-point boundary correlations in detail, and discuss a number
of complications that arise in the mapping from sandpile correlations to spanning tree correlations; the structure
of our results suggests a conjecture that could greatly simplify future calculations. We find a number of
three-point functions along closed boundaries, and propose closed boundary field identifications for the height
variables. We analyze the effects of dissipative defect sites, at which the number of grains is not conserved, and
show that dissipative defects along closed boundaries, and in the bulk, have no effect on any weakly allowed
cluster variables, or on their correlations. Along open boundaries, we find a particularly simple field structure;
we calculate alln-point correlations, for any combinations of height variables and dissipative defect sites, and
find that all heights and defects are represented by the same field operator.
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I. INTRODUCTION

The Abelian sandpile modelsASMd, introduced by Bak,
Tang, and Wiesenfeld, is the original prototype for self-
organized criticalityf1g. Systems with self-organized critical-
ity are naturally driven to a critical point, and thus can po-
tentially explain how power laws occur in nature without any
fine-tuning of parameters. Since their introduction, sandpile
models have been used to model an extraordinarily wide
range of systems, from earthquakesf2g to river networks
f3,4g; seef5,6g for reviews.

To be precise, we are considering the two-dimensional
isotropic Abelian sandpile model. This is a very simple
model; in fact, its simplicity is its strength, since otherwise it
could not act as a model for such a diverse range of physical
systems. The ASM is defined on a square lattice, where each
site has a height variablesthe number of grains of sand at
that sited that can range from one to four. At each time step,
a grain of sand is added to a random site. Any site with more
than four grains is unstable, and collapses, losing four grains,
and sending one grain to each of its neighbors. Unstable sites
are repeatedly collapsed until all sites are stable. Then, a new
time step begins—a grain is added to a random site, and the
process begins anewf1g. Initially, probabilities of configura-
tions will depend on the initial conditions, but after a long
period of time, the ASM develops a well-defined probability
distribution of states, independent of the initial conditions
f7g. Typically, the number of grains is conserved in each
toppling, except for sites along open boundaries, where
grains are lost with each topplingsi.e., fall off the edged.
There must be at least one dissipative site—i.e., at least one
site where the number of grains decreases upon toppling—or
else the sandpile would eventually reach a state where top-
plings continued endlessly during a single time step.

Despite its simplicity, certain basic properties of the ASM
remain unknown. For example, despite intensive work, the
power law governing the sizes of avalanches in the ASM is
still unknown—seef8g for a review. And while the height
one variable is well understood, the roles played by the
higher height variablesstwo, three, and fourd are not. For
example, no bulk two-point correlation functions of higher
height variables are known.

It is known that the ASM is related to the set of spanning
trees that can be drawn on the sandpile lattice, and that this
relationship can be used to perform exact calculations of
ASM probabilitiesf7,9g. A spanning tree is a set of arrows
drawn on the lattice, such that each site has exactly one
arrow pointing from the site to a neighbor, and such that
there are no closed loops of arrows. Following the path of
arrows from any site will eventually lead off the edge of the
sandpilesor, more generally, to a dissipative site, such as
found on an open boundaryd—the “site” off the edge of the
sandpile is called the root. A number of relationships be-
tween the ASM and spanning tree states are known. For ex-
ample, the number of recurrent states of the ASMsstates that
occur with nonzero probability after a long amount of timed
is equal to the number of spanning trees that can be drawn on
the sandpile latticef9g.

Spanning trees are, in turn, related to thec=−2 conformal
field theory sCFTd. The c=−2 CFT is the simplest known
example of a logarithmic conformal field theorysLCFTd, and
is well understoodf11–13g.

A method introduced by Majumdar and Dhar exploits the
mapping between ASM states and spanning tree states to
obtain exact ASM probabilitiesf14g. It has long been known
that the Majumdar-Dhar method can be used to find the two-
point correlation function of the unit height variable, which
decays as 1/r4 f14g. More recently, Mahieu and Ruelle used
the Majumdar-Dhar method to calculate correlation functions
of a number of ASM height configurations, known as weakly
allowed cluster variablesf15g. They not only found that all*Electronic address: mjeng@siue.edu
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the correlations decayed as 1/r4, but were able to use their
correlations to identify the 13 simplest weakly allowed clus-
ter variables with operators in the LCFT. These variables
were all identified with linear combinations of three LCFT
field operators, all of which had scaling dimension two, but
only one of which—the]u]̄ū+ ]̄u]ū operator—was isotropic.
In some ways, this suggested that the higher height variables
should be identified with]u]̄ū+ ]̄u]ū; on the other hand,
Mahieu and Ruelle pointed out that this appeared inconsis-
tent with LCFT operator product expansionssOPE’sd.

Despite the power of these mappings, and of the
Majumdar-Dhar method, fundamental questions about the
ASM remain unanswered, because aspects of the mapping
between the ASM andc=−2 LCFT are still unknown—for
example, it is not known what field operators in thec=−2
LCFT represent the higher height variables of the ASMsor,
indeed, whether such a representation even existsd. A single
site with height two, or any higher height variable, is not a
weakly allowed cluster, and thus higher height probabilities
and correlations cannot be calculated with the Majumdar-
Dhar method. Priezzhev was able to extend the Majumdar-
Dhar method to calculate the bulk probabilities for all higher
height variablesf10g. However, the bulk correlations of the
higher height variables, which would be needed to obtain the
field identifications of the higher height variables, remain
unknown.

Ivashkevich calculated all two-point correlation functions
of all height variables, along open and closed boundaries
f16g. He found that all boundary correlations, between all
height variables, decayed as 1/r4, and argued that this im-
plied that all four height variables should be represented by
the same field operatorsup to rescalingd. Dhar has argued
that, based on clustering properties of correlation functions,
the bulk correlations should be expected to factorize in a
manner consistent with giving all four height variables the
same field identificationf17g.

However, we argue here that the four height variables
should in fact receive different field identifications, both
along closed boundaries, and in the bulk, and propose field
identifications along closed boundaries. Our conclusions are
based on analysis of closed boundary three-point functions,
and of dissipative defect sites, as well as a reanalysis of the
methods and results of Ivashkevich. However, we show that
along open boundaries all four height variables, as well as
dissipative defect sites, are represented by the same operator,

]u]ū, in thec=−2 LCFT. We demonstrate this by computing
all n-point correlations of height variables and dissipative
defects.

In Secs. II and III we briefly review the methods used by
Majumdar, Dhar, and Priezzhev for studying the ASM. In
Sec. IV, we review Ivashkevich’s calculations of the bound-
ary height probabilities.

In Sec. V, and Appendixes A and B, we discuss issues
associated with boundary correlation functions. While Ivash-
kevich has already calculated the boundary two-point corre-
lations f16g, we show that he mischaracterized the mapping
between ASM configurations and spanning tree configura-
tions, and a correct characterization results in a number of
complications, necessitating a reanalysis of the two-point

correlations. The relationship between ASM states and span-
ning tree states is not what one might have initially expected;
we also note that linear relationships between nonlocal span-
ning tree conditions and local spanning tree conditions for
one-point probabilities do not carry over in a simple fashion
for multipoint correlation functions. Both of these complica-
tions introduce what we call “anomalous graphs”—while
these complications are important, because they are technical
in nature, we delegate much of the discussion to the Appen-
dixes. In Sec. V we calculate the anomalous graphs, and
conjecture that the anomalous graphs have no effect on the
universal parts of any boundary correlation functions; while
we have not been able to prove this conjecture, it holds true
for all correlation functions that we have calculated.

In Sec. VI, we look at correlation functions along closed
boundaries. For two-point correlation functions, we find that
while we disagree with Ivashkevich’s relationship between
ASM and spanning tree states, we agree with his final re-
sults. However, we argue that these final results are, in fact,
not consistent with identifying all height variables with the
same field operator. Next, we calculate all three-point func-
tions along closed boundaries that involve at least one unit
height variable, and use these to make field identifications
along closed boundaries. Selected three-point functions ap-
pear in Eqs.s17d–s19d, and we state the field identifications
in Eqs.s20d–s22d.

Next, in Sec. VII, we introduce the concept of a dissipa-
tive defect site, and discuss its effect on the lattice Green
functions for the open, closed, and bulk cases. In Sec. VIII,
we show that in the closed and bulk cases, dissipative defects
have no effects onanyweakly allowed cluster variables. This
demonstrates that an analysis of weakly allowed cluster vari-
ables, such as that inf15g, cannot provide a complete picture
of the ASM. Our results imply, as a particular case, that
dissipative defects in the closed and bulk cases have no ef-
fect on the unit height probability, or on correlations of unit
heights. They do, however, have an effect on the higher
height variables; we show this analytically for the closed
case, in Eqs.s28d and s29d, and have checked this numeri-
cally for the bulk case.

In Secs. IX–XI, we compute alln-point correlation func-
tions, for any number of height variables, and with any num-
ber of dissipative defects, along open boundaries. We find
that there, all four height variables and dissipative defects are

all represented by the same dimension two field]u]ū. In
fact, all local arrow diagrams along open boundaries are rep-

resented by]u]ū, up to multiplicative prefactors.
A short summary of these results can be found inf18g.

II. METHODS FOR ANALYZING THE ASM

At its core, the ASM is a tractable model because the
sandpile model has an Abelian structure; the state of the
sandpile does not depend on the order in which grains are
added to the sitesf7g. As a result of this Abelian structure, it
can be shown that the states of the sandpile fall into two
simple categories. Some of the 4N states of the sandpile
swhereN is the number of sitesd are transient, which means
that they can occur early in the ASM’s evolution, but occur
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with zero probability after an infinitely long time. The other
states are recurrent, and all occur with equal probability after
long times. So the probability for a propertyX to occur is
nothing more than the fraction of recurrent states having
propertyX.

To analyze the sandpile, it is convenient to allow more
general toppling rules. We characterize the sandpile by a top-

pling matrix DiWjW, whereiW and jW are any lattice sites.iW topples
if its height is ever greater thanDiW iW, at which point its height

goes down byDiW iW, and the height of every other sitejW goes

up by −DiWjWù0 sDiWjW=0 if iW and jW are not neighborsd. The
original ASM, described in the Introduction, hasDiWjW=4 when

iW= jW sor DiWjW=3 when iW= jW is along a closed boundaryd, DiWjW=

−1 wheniW and jW are nearest neighbors, andDiWjW=0 otherwise.
Dhar was able to show that the number of recurrent states,

given very general restrictions onD, is equal to detsDd f7g.
However, detsDd is also known to be equal to the number of
spanning trees that can be drawn on the latticef9g. In the
spanning tree representation,DiW iW indicates the number of

neighbors that the arrow fromiW can point to;DiWjW=−1 if an

arrow can point fromiW to jW, andDiWjW=0 otherwise.
Certain height probabilities in the ASM can be equated

with probabilities for spanning trees to have particular arrow
configurations. Probabilities forsomearrow configurations
can be computed simply by modifying the toppling matrix
from D to D8, in a way that enforces that arrow configura-
tion. Then, the number of spanning trees with the configura-
tion is detsD8d, and the probability of the configuration is
detsD8d /detsDd. Defining B;D8−D, the probability be-
comes

detsD8d
detsDd

= detsI + BGd. s1d

G;D−1 is the well-known lattice Green functionf24g ssee
Appendix Cd. If D8 only differs fromD in a finite number of
entries, thenB is finite dimensional, and the probability can
be easily computed.

Majumdar and Dhar used this method to find the probabil-

ity for a site iW to have unit heightf14g. To do this, they
defined a modified, or “cut” ASM, in which three of the four

bonds connectingiW to nearest neighbors are removed. When
a bond is removed, the maximum height of sites on each end

is decreased by one; so the three sites adjacent toiW get maxi-

mum heights of 3, andiW gets a maximum height of4−3=1.
It is not difficult to show that recurrent statesS sof the origi-

nal ASMd where iW has height one are in one-to-one corre-
spondence with the recurrent statesS8 of the cut ASM. In
this correspondence, we map fromS to S8 by lowering the

heights of each of the three sites cut off fromiW by one.

Letting jW1, jW2, and jW3, be the three neighbors thatiW has been
cut off from, we have

B =

iW jW1 jW2 jW3

1
− 3 1 1 1

1 − 1 0 0

1 0 − 1 0

1 0 0 − 1
2 iW

jW1

jW2

jW3

s2d

Then the unit height probability is detsI+BGd=2sp−2d /p3.
This method was also used by Majumdar and Dhar to calcu-
late the two-point correlation of the unit height variablef14g.

Priezzhev extended the Majumdar-Dhar method to allow
for the calculation of diagrams with closed loops. With the
basic Majumdar-Dhar method, all off-diagonal entries of the
toppling matrix are either 0 or −1. Priezzhev proved that if in
D8 we setn off-diagonal entries ofD to −e, then

lim
e→`

detsD8d
en s3d

is equal to the number of arrow configurations such that each
of the n corresponding arrows is in a closed loop of arrows,
where each closed loop contributes a factor of −1, and there
are no closed loops other than those going through thesen
bonds.

Such configurations are not spanning trees; spanning trees
cannot have any closed loops. However, Priezzhev found
that to calculate certain spanning tree probabilities, he
needed to calculate graphs that had closed loopssu graphsd.
We find this method useful for the calculation of certain
closed boundary correlations.

III. HEIGHT PROBABILITIES

Priezzhev determined a relationship between higher
height probabilities and spanning tree states, which we re-
view heref10g.

Central to our analysis is the concept of forbidden sub-
configurationssFSC’sd. A forbidden subconfiguration is a

subsetF of the lattice, such that for alliWPF, hiWøciWsFd,
wherehiW is the height of siteiW, andciWsFd is the number of

neighbors thatiW has inF. Majumdar and Dhar proved that a
state of the ASM is recurrent if and only if it has no FSC’s
f7,9g.

The probability for a siteiW to have height two is more
complicated than the height one probabilityf10g. In this case,
changing the site height to one could either leave the ASM in
an allowedsrecurrentd state, or produce a FSC. The first case
just gives the height one probability, which has already been
calculated, so we consider the second case. Changing the

height of iW from two to one can produce multiple FSC’s. Let
F be the maximal forbidden subconfigurationsMFSCd pro-
duced by this change.sBecause more than one FSC can be
produced, the word “maximal” is necessary for complete
precision, and for this mapping to work; Priezzhev simply
referred to “the” FSC, but this does not introduce any errors

in his analysisf10g.d F must containiW, and exactly one of the

neighbors ofiW, and be simply connected, but can otherwise
have arbitrary shape. The statesSof the original ASM where
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changing the height ofiW from two to one producesF as the
MFSC are in one-to-one correspondence with statesS8 of a
modified ASM. In the modified ASM, all the bonds border-
ing F are removed, except for onesarbitrarily chosend bond

of iW. In the correspondence, we map fromS to S8 by lowering
heights of all sites that borderF by the number of neighbors
of F that they have been cut off from.sIn this mapping,
heights inF are unaffected.d With this mapping, the stateS
has no FSC’s in the original ASM if and only if the stateS8
has no FSC’s in the cut ASM.sPriezzhev’s explanation used
a slightly different, but equivalent, argument, based on the
burning algorithm, a method for determining if a state is
recurrentf7,10g.d

The siteiW is called a predecessor of the sitejW in the span-

ning tree if the path fromiW to the root goes throughjW. We

define NNPiW, as the number of nearest neighbors ofiW that are

predecessors ofiW. Then, the correspondence above shows
that the number of states of the modified ASM is equal to the
number of spanning trees of the modified lattice, which is in
turn equal to the number of spanning trees whereF is the set

of predecessors ofiW. Summing over all possible setsF, we
simply obtain the number of spanning trees where NNPiW=1.

Similarly, it can be shown that the number of ASM states

allowed wheniW has heighth sor greaterd but forbidden when

iW has heighth−1 sor lessd, is equal to the number of spanning
trees where NNPiW=h−1. Thus, the probabilityPASMshd for
the site to have exactly heighth in the ASM is

PASMshd = o
u=1

h
PSpTrsu − 1d
miW + 1 −u

, s4d

wherePSpTrsu−1d is the probability that a randomly chosen
spanning tree will have NNPiW=u−1, andmi is the maximum

possible height ofiW. smiW=4 in the bulk, and along open
boundaries, whilemiW=3 along closed boundaries.d For more
details, seef10g.

This gives an exact representation of ASM height prob-
abilities in terms of spanning tree probabilities. However,
these spanning tree probabilities are not easy to calculate.
Spanning tree probabilities that correspond to local restric-
tions on the spanning tree can be calculated with the
Majumdar-Dhar method. However, the statement that NNPiW

=u−1 is a nonlocal restriction on the spanning treesfor u
.1d. Priezzhev was able to calculate these nonlocal prob-
abilities, but his calculations were complicated, and do not
appear to be easily extensible to calculation of bulk correla-
tions. However, this problem turns out to be more tractable
along a boundary.

IV. BOUNDARY HEIGHT PROBABILITIES

For sites at the boundary, the relationship between height
probabilities and NNP’s still holds, and the NNP condition is
still nonlocal. Nevertheless, Ivashkevich was able to show,
through an ingenious transformation, that the ASM height
probabilities are much easier to calculate along boundaries
f16g.

In Fig. 1 we list all possible nonlocal arrow configurations

around a siteiW of a closed boundary. In each picture, the

dashed line is the boundary, and the central site isiW. Large,

solid circles are predecessors ofiW, while large, open circles
are not. We see explicitly that the predecessor relationships
are nonlocal.b1 andf1 differ only in whether the site above

iW leads toiW by a chain of arrows—since the chain of arrows

can go through sites distant fromiW, this is a nonlocal distinc-
tion. If we can figure out the probabilities of all these dia-
grams, we can figure out the NNP probabilitiessand thus the
height probabilitiesd. For example, the probability for NNPiW

=1 is simply 2b1+2b2+2g, since these diagrams catalog all

the ways thatiW can have exactly one NNP.
These nonlocal diagrams are difficult to calculate. On the

other hand, local restrictions are easily calculated with the
Majumdar-Dhar method. All local arrow diagrams along
closed boundaries are shown in Fig. 2. Note that these dia-
grams do not have solid or open circles, because predecessor
relationships are not specified in local diagrams. Ivashkevich
pointed out that the local arrow diagrams could be written as

FIG. 1. Nonlocal arrow diagrams along closed boundaries.

FIG. 2. Local arrow diagrams along closed boundaries.
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linear combinations of nonlocal arrow diagrams. For ex-
ample, looking at Figs. 1 and 2, we see thatLc,1=f1+b1. At
first sight, there are more nonlocal arrow diagrams than local
arrow diagrams, so such linear relationships would not ap-
pear to let us solve for the nonlocal arrow diagrams. How-
ever, Ivashkevich also pointed out that certain nonlocal ar-
row diagrams are equal in probability—for example,f1 and
f2 are equal in probability, because we can make a one-to-
one mapping fromf1 to f2 by reversing all arrows in the

long path off1, and then switching the incoming arrow toiW.
Similarly, b1=b2. Then, we have as many nonlocal diagrams
as local diagrams, and can solve for the nonlocal arrow dia-
grams.sIn fact, along open boundaries, the number of local
diagrams is one greater than the number of nonlocal arrow
diagrams, so that the system is overconstrained, providing a
check on the calculations.d Ivashkevich used this to calculate
all height probabilities along open and closed boundaries.
Seef16g for the full list of linear relationships between local
and nonlocal diagrams.

V. BOUNDARY TWO-POINT CORRELATIONS AND
ANOMALOUS GRAPHS

The calculation of boundary correlations is much more
difficult. We show in Appendix A that Ivashkevich’s calcu-
lation of the two-point functions was incorrect, and ignored
complications that arise in the relationship between ASM
height correlations and spanning tree correlationssalthough
his end result turns out to be correctd. In Appendix B, we
discuss further complications that arise in transforming from
nonlocal spanning tree correlations to local spanning tree
correlations. We summarize the results here, and analyze the
resulting “anomalous graphs.”

The first complication arises in the correspondence be-
tween ASM height probabilities and spanning tree probabili-
ties. It would be natural to think that, analogously to Eq.s4d,
the ASM probabilityPASMshiW,hjWd for the sitesiW and jW to have
exactly heightshiW andhjW should be given by

PASMshiW,hjWd=
?

o
u=1

hiW

o
v=1

hjW

PSpTrsu − 1,v − 1d
smiW + 1 −udsmjW + 1 −vd

, s5d

wherePSpTrsu−1,v−1d is the probability that in a spanning
tree, NNPiW=u−1 and NNPjW=v−1. However, this turns out to
not be quite the case. Equations5d is a natural guess, which
we call a “naive” approach, but as shown in Appendix A, the
left and right sides of Eq.s5d differ by a subset of spanning
trees that we call anomalous graphs of the first kind.sThese
graphs are not anomalous in any physical sense; we simply
mean that they differ from what we would get, using a cer-
tain naive starting point.d

The set of anomalous graphs of the first kind, for the
closed case, is shown in Fig. 3.sWe represent the root with a
star.d In the graph, NNPiW=NNPjW=1, so this graph appears in
the right-hand side of Eq.s5d for hiW=hjW=2. However, we
show in Appendix A that this graph does not contribute to
the 2-2sheight two–height twod correlation, but instead con-
tributes to the 2-3 and 3-2 correlations, and gets subtracted
from the 3-3 correlation.

Second, leaving aside for now the anomalous graphs of
the first kind, we need to calculate correlations of nonlocal
arrow diagrams. It would be convenient if we could use the
linear relationships relating nonlocal arrow diagrams to local
arrow diagrams found for one-point functionssSec. IVd, and

use themindependentlyat iW and atjW for two-point functions.
We again call this approach “naive,” and again, this approach
does not quite work. The problem arises because for one-
point functions, we treatedf1 andf2 as equivalent, based on
a one-to-one correspondence in which a long path was re-
versed. In a correlation function of nonlocal arrow diagrams,

the long path from af1 at iW may go through arrow con-

straints nearjW, which are not free to be reversed. We discuss
this problem in detail in Appendix B. Consideration of this
problem shows that, relative to the naive approach, our re-
sults are changed by graphsa andb, shown in Fig. 4. We call
these anomalous graphs of the second kind.

The anomalous graphsa, b, andc can be calculated with
the extension of the method of Priezzhev, discussed in Sec. II
f10g. We discuss only the calculation of theb term; the
analysis of the other terms is similar.

b represents a subset of spanning trees, and thus cannot
have any closed loops. However, it comes “very close” to

having a closed loop that includes the distant sitesiW and jW,
and we see in Fig. 5 thatb can be written as a sum of closed
loop diagrams.

Priezzhev’s method allows us to calculate the closed loop
diagrams. We represent an arrow whose weight inD is set to
−ese→`d with a wavy bond line. As discussed in Sec. II,
these bonds must be part of a closed loop, and we get a factor
of −1 for every closed loop. This gives the relations in Fig. 6.
Taking the difference of the two graphs in Fig. 6 then gives

the value of a closed loop diagram that goes through bothiW

and jW. Using this method, we find the number of diagrams
b1, b2, andb3 slabeled in Fig. 5d, as ratios ofN, the total
number of spanning trees:

FIG. 3. Anomalous graph of the first kind arising in the calcu-
lation of the two-point function.

FIG. 4. Anomalous graphs of the second kind arising in the
calculation of the two-point functions.

FOUR HEIGHT VARIABLES, BOUNDARY… PHYSICAL REVIEW E 71, 036153s2005d

036153-5



Nb1

N
=

s3p − 8d2fpgsxd − 1g
4p4x2

+
s− 128 + 48p + p2d + s256 − 192p + 30p2dpgsxd

16px4

+ OS 1

x6D , s6d

Nb2

N
=

s3p − 8d2fpgsxd − 1g
2p4x2 +

s3p − 8df2pgsxd − 1g
4p3x3

+
s3p − 8dfs4 − pd + s3p − 8dpgsxdg

2p4x4 + OS 1

x5D ,

s7d

Nb3

N
=

s3p − 8d2fpgsxd − 1g
4p4x2 +

s3p − 8df2pgsxd − 1g
4p3x3

+
s− 128 + 48p − p2d + s256 − 192p + 42p2dpgsxd

16px4

+ OS 1

x5D . s8d

x is the separation betweeniW and jW along the defect.gsxd is

the Green function betweeniW and jW, and diverges as lnsLd,
whereL is the system sizefit also diverges as lnsxdg. The
restriction that spanning trees should have no closed loops
greatly limits the number of possible spanning trees, when
the outlets to the rootsopen boundariesd are very far away.
So diagrams such asb1, b2, andb3, that allow a closed loop,
are much more numerous than diagrams of spanning trees.

However, to findb, we take the linear combinationsNb1

−Nb2+Nb3d /N and the lnsLd divergences cancelsthis pro-
vides a check on our calculationsd. a and c can be found
similarly. We find

a =
3p − 8

2p3x4 + OS 1

x5D , s9d

b =
3p − 8

2p3x4 + OS 1

x5D , s10d

c = OS 1

x6D . s11d

a andb are both of order 1/x4. The two-point correlation
functions turn out to decay as 1/x4, so the anomalous graphs
could, in principle, affect the universal parts of the correla-
tion functions. However, the anomalous graphs of the second
kind come in the combinationsa−bd fsee Eqs.sB5d–sB7dg.
So their total contributions to the two-point correlations are
Os1/x5d, and can be dropped.

The end result is rather surprising. A “naive” approach
might simply apply the relationship between ASM states and
NNP conditions found for the one-point functions, indepen-

dently at iW and jW fi.e., extend Eq.s4d to Eq. s5dg, and then
apply the relationships between nonlocal arrow diagrams and
local arrow diagrams found for the one-point functions, in-

dependently atiW and jW. Neither of these steps is correct, and
a correct analysis produces correction termssthe anomalous
graphsd to this naive approach. But, somehow, the anomalous
graphs, while nonzero, produce no correction to the leading-
order, universal results at any stage of the computation; the
naive approach gives the answers. In fact, we find in the
following sections that the naive approach again gives cor-
rect results for all three-point closed boundary correlations
that we have calculated, and for all open boundary correla-
tions. This leads us to conjecture that the naive approach
always produces correct universal results, for all correlations.
If this conjecture were proven true, it would greatly simplify
further calculations—for example, the anomalous diagrams
have prevented us from calculating the 2-2-2 correlation
along closed boundaries.

VI. TWO- AND THREE-POINT CLOSED BOUNDARY
CORRELATION FUNCTIONS

We define, for all correlation functions along closed
boundaries,

fcsa1,a2, . . . ,and = ksdhx1
,a1

− pa1,cd ¯ sdhxn
,an

− pan,cdlc.

s12d

In this correlation function, the heighthxu
at the boundary

site xu is required to beau. We have subtracted off the con-
stant boundary probabilities,pau,c, which were found inf16g,
as described in Sec. IV. The subscript “c” stands for
“closed.” As already noted, despite errors in the setup in
f16g, the results off16g are nevertheless correct, where it was
found that

FIG. 5. Anomalous graphb as a linear combination of closed
loop diagrams.

FIG. 6. Use of −e weight bonds to evaluate closed loop
diagrams.
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fcs1,1d = S−
9

p2 +
48

p3 −
64

p4D 1

sx1 − x2d4 + ¯ , s13d

fcs1,2d = S12

p2 −
68

p3 +
96

p4D 1

sx1 − x2d4 + ¯ , s14d

fcs2,2d = S−
61

4p2 +
96

p3 −
144

p4 D 1

sx1 − x2d4 + ¯ . s15d

The correlation functions involving the height three variables
were also calculated, but we do not write them here, as they
are determined by the requirement that all height probabili-
ties must sum to 1 at every site.fThere is a misprint in the
result for fcs3,3d in f16g.g

Ivashkevich argued that the fact that all two-point corre-
lations decay as 1/sx1−x2d4 indicates that all three height
variables are represented by the same field operator. How-
ever, if all height variables were represented by the same
operator, we would expect the two-point functions to factor-
ize, as

fcsu,vd = −
KuKv

sx1 − x2d4, u,v P h1,2,3j, s16d

for some constantsKu. However, the results in Eqs.
s13d–s15d do not factorize in this manner. Dhar argued that
we should expect this factorization for bulk correlations,
based on the “clustering properties of correlation functions,”
but we see that this factorization already fails along closed
boundariesf17g. sWe will see later that the open boundary
correlations do, however, factorize in this manner, for all
n-point correlations.d

To clarify the field identifications, we have calculated all
three-point functions along closed boundaries, where at least
one of the heights is the unit height. Some of our results are

fcs1,1,1d =
2s3p − 8d3

p6sx1 − x2d2sx1 − x3d2sx2 − x3d2 + ¯ ,

fcs1,1,2d = −
8sp − 3ds3p − 8d2

p6sx1 − x2d2sx1 − x3d2sx2 − x3d2 s17d

−
s3p − 8d2

p5sx1 − x3d3sx2 − x3d3 + ¯ , s18d

fcs1,2,2d = −
4s3p − 8ds− 5p2 + 39p − 72d

p6sx1 − x2d2sx1 − x3d2sx2 − x3d2

+
s3p − 8ds24 − 7pd

2p5sx1 − x2d3sx1 − x3d3 + ¯ . s19d

Other three-point correlation functions, calculated with
the same methods, are listed in Appendix D. They are all
consistent with the requirement that the three height prob-
abilities must sum to 1 at any site, and permutation symme-
try, thus providing a check on our calculations.

We again get a number of anomalous graphssrelative to a
naive approachd, and as stated in the previous section, again
find that all anomalous graphs cancel in the universal,

leading-order terms of the correlation function.
These correlation functions are consistent with identifying

the height variables with the following field operators in the
c=−2 CFT:

−
2s3p − 8d

p2 s]u]ūd, height one, s20d

6sp − 4d
p2 s]u]ūd +

1

2p
u]2ū, height two, s21d

8

p2s]u]ūd −
1

2p
u]2ū, height three. s22d

The representation of thec=−2 CFT used here is described
briefly in Appendix E. Note that the boundary correlations in
Eqs.s17d–s19d are the same as thebulk correlations of Eqs.
s20d–s22d, and that while thec=−2 CFT contains holomor-
phic and antiholomorphic fieldsfthe] and]̄ of Eq. sE1dg, the
fields in Eqs.s20d–s22d contain only holomorphic fields. This
is consistent with boundary CFT. While fields in the bulk
generally have holomorphic and antiholomorphic parts, near
a boundary the antiholomorphic pieces behave, in all corre-
lation functions, like holomorphic pieces at mirror positions
across the boundaryf19g.

It is also consistent to make the substitutionu→ ū, ū→
−u in these field identifications, as thec=−2 LCFT is sym-
metric under this transformationfsee Eq.sE1dg.

The fact that the field identifications for the height vari-
ables differ along a closed boundary proves that they must
also differ in the bulk. This is because in a CFT, boundary
operators are derived from operator product expansions of
bulk operatorsf19g. Furthermore, in Appendix F we present
a simple argument, based on general CFT principles, and not
on any detailed calculations, that the height variables must
have different field identifications in the bulk.

We have not been able to calculate three-point correlation
functions that have no unit height variables. The basic prob-
lem is with the anomalous diagrams that arise when we con-
vert from nonlocal arrow diagrams to local arrow diagrams
sas in Appendix Bd. The trick shown in Fig. 6, for evaluating
the resultant closed loop diagrams, does not work for these
three-point functions. We note that if we use the conjecture
proposed in Sec. Vsi.e., ignore the anomalous graphsd, we
obtain

fcs2,2,2d = −
s24 − 5pds− 576 + 384p − 61p2d
4p6sx1 − x2d2sx1 − x3d2sx2 − x3d2 + ¯

s23d

sand other three-point functions consistent with the require-
ment that all three height probabilities must sum to 1 at any
sited. This correlation function is consistent with the field
identification in Eq.s21d, providing support for our conjec-
ture.

VII. DISSIPATIVE DEFECT SITES: GENERAL

We now consider the effects of dissipative defects on the
ASM. Generally, at sites in the bulk, or along closed bound-

FOUR HEIGHT VARIABLES, BOUNDARY… PHYSICAL REVIEW E 71, 036153s2005d

036153-7



aries, the number of grains is conserved at each toppling.
Usually, it is only at open boundaries that the number of
grains is not conserved; there, of the four grains toppled,
three grains are sent to neighbors, while the remaining grain
goes off the edge of the sandpile, to the root.

Some dissipationsi.e., sites where topplings remove
grains from the sandpiled is necessary for the sandpile model
to be well defined, since otherwise we would end up with
states where the topplings never terminated. Nevertheless,
dissipation often plays a minor role in analysis of the sand-
pile, because properties are often studied in the bulk of the
ASM, with the dissipative sites along the open boundaries
infinitely far away.

Some previous studies have investigated the effect of add-
ing dissipation throughout the bulk of the ASM. Instead of
having bulk sites topple when their height is greater than 4,
they topple when their height is greater than 4+k sk.0d.
Then, one grain is sent to each of the four neighbors, andk
grains are lost to the root. It has been shown, both numeri-
cally and analytically, that if this is done at all sites, the ASM
is taken off the critical point, and the power law correlations
are destroyedf20–22g. This happens even whenk is infini-
tesimal.sAlthough this modification to the ASM has its most
obvious interpretation for integerk, the theory can be given a
sensible interpretation for any rational value ofk. Seef20g
for details.d More recently, Mahieu and Ruelle have demon-
strated the precise manner in which dissipation throughout
the bulk takes the ASM off the critical point. They found that
the dissipation has exactly the same effect on correlation
functions of weakly allowed cluster variables, as adding the

integral of the dimension 0 variable,uū, to thec=−2 CFT
f15g. Adding dissipation along a line has been shown to split
the ASM into two separate half planes, each with open
boundary conditionsf23g.

Here, we consider the effect of adding dissipation at only
a single defect site. Then, the methods of Majumdar and
Dhar still work, but we need to use a modified lattice Green
function. If k grains of sand are dissipated at the lattice po-

sition dW, then we callk the “strength” of the defect. The
toppling matrix is then changed from the defect-free toppling
matrix D0 to

DiW,jW = D0;iW,jW + kdiW,dWd jW,dW . s24d

The Green function is simply the inverse of the toppling
matrix, and is changed from the defect-free Green function
G0 sdescribed in Appendix Cd, to

GsiW, jWd = G0siW, jWd −
k

1 + kG0sdW,dWd
G0siW,dWdG0sdW, jWd. s25d

This holds for any value ofk, and regardless of the location
of the defect. Nevertheless, the defect behaves very differ-
ently in the open case, and in the closed and bulk cases. This
is because the Green function between nearby lattice sites is
Os1d near an open boundary, butOsln Ld near a closed
boundary, or in the bulkf24,25g. L is the system size, or
more generally, is of the same order of magnitude as the
distance to the nearest open boundary. This divergence in the
Green function asL→` for the closed and bulk cases is

usually not an issue, since in most cases we are concerned
with differences in Green functions. However, here the di-
vergence of all theG0 terms makes Eq.s25d unwieldy, al-
though technically correct.fEquations25d can be used in the
open case without modification.g We work in a limit where

the distances betweeniW, jW, anddW, while possibly large, are all
much less thanL. In this limit, dropping terms of order
1/sln Ld, Eq. s25d becomes

GsiW, jWd = G0siW, jWd − G0siW,dWd − G0sdW, jWd + G0sdW,dWd. s26d

Note that Eq.s26d is independent ofk. This makes sense,
since in the bulk, or along a closed boundary, spanning trees
have to travel far to reach the root. But with the defect given

by Eq. s25d, k bonds are added from the defectdW to the root.
Adding a dissipative defect provides such an “easy” way to
reach the root, that with high probabilitysprobability 1 as
L→`d, all nearby points will be predecessors of the dissipa-
tive defect, regardless of the value ofk. The set of spanning
trees will thus be the same, in theL→` limit, for any k.
Note also that the Green function in Eq.s26d no longer di-
verges asL→`, which is appropriate, as we are no longer
OsLd from any dissipative sites.

VIII. DISSIPATIVE DEFECT SITES: CLOSED AND BULK
CASES

Surprisingly, it turns out that a dissipative defect, either in
the bulk or on or near a closed boundary, has no effect on
any weakly allowed cluster variables in the ASM. Weakly
allowed cluster variables are height configurations that result
in a subconfiguration that contains a FSC if any height in the
configuration is reduced by onef26g. Examples of weakly
allowed cluster variables are a single height one variable, or
a height one adjacent to a height two. Such variables can be
calculated with the Majumdar-Dhar method by the removal
of a set of bonds in the ASM or spanning tree. We note that
correlations of weakly allowed cluster variablesssuch as all
correlations of the unit height variabled are also weakly al-
lowed cluster variables.

Probabilities of weakly allowed cluster variables can be
calculated as detsI+BGd, as in Sec. II. To analyze the effects
of the defect, we want to consider the effect of modifying the
Green function from the defect-free Green functionG0 to the
Green function in Eq.s26d, for a fixed matrixB si.e., for a
specific weakly allowed cluster variabled.

In general, for local arrow restrictions, each row ofB
must sum to zero, because if the restrictions on the spanning

trees prevent an arrow fromiW to jW, thenBiW,iW goes down by 1,
while BiW,jW goes up by 1.fFor example, for the height one
variable, the matrixB in Eq. s2d arises from the restriction

that no arrows can point fromiW to jW1, jW2, or jW3, nor from jW1, jW2,

or jW3 to iW.g For the weakly allowed cluster variables,B is

symmetric, since if the arrow fromiW to jW is forbidden, then so

is the arrow fromjW to iW. So every column ofB also sums to
zero.

Since every row ofB sums to zero, the parts ofG that are
independent of the row index ofG make no contribution to
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BG, and thus no contribution to the probability detsI+BGd.
And detsI+BGd=detsI+GBd, so since every column ofB
sums to zero, the parts ofG that are independent of the
column index also make no contribution to the probability.
The last three terms of Eq.s26d all depend either only on the
row index, or only on the column index. So a dissipative
defect has no effect on any weakly allowed cluster probabili-
ties seither on one-point probabilities or on correlationsd.

As a special case, this means that the unit height probabil-
ity, and its correlations, are unaffected by closed or bulk
dissipative defects. However, the higher height variables are
affected. Using the Green function in Eq.s26d, and the meth-
ods described in Sec. IV, we find that along a closed bound-
ary, with a defect at the origin, we have the following height
probabilites atx1:

fcs1d = 0, s27d

fcs2d = −
1

2px1
2 + ¯ , s28d

fcs3d = +
1

2px1
2 + ¯ . s29d

We have numerically confirmed these results. These results
provide further evidence that the height two and three vari-
ables have different field identifications along closed bound-
aries.

Since the height two and three variables have dimension
two, this indicates that a dissipative defect along a closed
boundary is a dimension zero operator. Consistent with this,
uniform dissipation in the bulk has been identified with the

integral of the dimension zero operatoruū f15g. However,

the correlation ofuū with the height two and three operators
in Eqs. s21d and s22d does not produce the correlations in
Eqs.s27d–s29d; this situation requires further analysis.

In the bulk, we would also expect that the higher height
probabilites would be affected by a defect site, and we have
confirmed this with numerical simulations, although we have
not proven this analytically.

The fact that weakly allowed cluster variables have no
correlations with bulk or closed defects provides compelling
evidence that weakly allowed cluster variables do not pro-
vide a complete picture of the sandpile model. This has par-
ticular bearing on the analysis of Mahieu and Ruellef15g.
They studied specific bulk correlations of the simplest
weakly allowed cluster variables, and developed a complete
field picture for these variables. They found thatsat the criti-
cal pointd these variables are all linear combinations of three

dimension two variables,]u]̄ū+ ]̄u]ū, ]u]ū, and ]̄u]̄ū,
strongly indicating that all weakly allowed cluster variables
are linear combinations of these three fields. However, this
analysis left the status of the height two variable unresolved.
Mahieu and Ruelle pointed out that since the height two
variable appears in a number of the weakly allowed cluster
variables, it might be expected that the height two variable
would also be a linear combination of these three fields, or
more specifically, proportional to the sole rotationally invari-

ant field,]u]̄ū+ ]̄u]ū f15g. But they also noted that such an
identification appeared inconsistent with the fusion rules of
the c=−2 CFT, which would indicate a different field iden-
tification. The analysis here points strongly to the latter con-
clusion, although the specific field identification in the bulk
remains unresolved.

IX. ALL n-POINT CORRELATIONS
ALONG OPEN BOUNDARIES: PART I

We have calculated alln-point correlations of all four
height variables, along open boundaries, in the presence of
an arbitrary number of dissipative defects. We begin by dis-
cussing why this case is so tractablesin contrast to the closed
case, where we have been unable to calculate the three-point
function of the height two variabled.

The heights of the correlation function are placed at
x1,x2, . . . ,xn, and definingxab;xa−xb;cabx, we work in the
limit x→`, where thecab’s are kept constant.

As discussed in Sec. V, and Appendixes A and B, a num-
ber of anomalous terms arise in the computation of correla-
tion functions. While the discussion in these sections focused
on closed boundary correlations, similar anomalous graphs
arise in open boundary correlations. However, it turns out
that these anomalous graphs produce no contributions to the
universal parts of any correlation functions, greatly simplify-
ing matters. We prove this claim in this section, and in the
next section look at the actual calculation of the correlation
functions.

We start by focusing on the two-point correlations. Note
that the anomalous graphs found thus far, in Figs. 3 and 4, all
involve “nearly closed” loops: the trees have paths that go

from the neighborhood ofiW to the neighborhood ofjW, and

from the neighborhood ofjW to the neighborhood ofiW. The
paths do not actually form closed loops, since no closed
loops are allowed in spanning trees, but they do come very
closeswithin one sited. The reasons for this are general, so
similar structures will arise in all anomalous graphs, for all
correlation functions. For example, the anomalous graphs in
Fig. 4 arose because a long, nearly closed loop from one site
could not be reversed in direction, if it passed through fixed
arrows at the other sitessee Fig. 10 of Appendix Bd.

In the open case, these anomalous graphs betweeniW and jW

always fall off faster thanOs1/x4d. This is in contrast to the
closed boundary case, where such diagrams diverge—see
Eqs.s6d–s8d. The difference results from the Green functions.
While the Green function diverges as lnsxd along closed
boundaries, it decays as 1/x2 along open boundariesssee
Appendix Cd. Using Priezzhev’s method, the matrix determi-
nant for evaluating any closed loop diagrams necessarily in-

volves two Green functions, one fromiW to jW, and another

from jW to iW, giving an overall factor of 1/x4. Furthermore,
calculating the diagrams requires two matrix determinants,
which come with leading terms equal in magnitude, but op-
posite in sign—see Fig. 6. TheOs1/x4d parts of the closed
loop diagrams thus cancel along open boundaries. So the
anomalous graphs for the two-point functions automatically
fall off faster thanOs1/x4d, and do not need to be considered
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when calculating leading-order, universal parts of correlation
functions.

By this logic, for anyn-point open boundary correlations,
any anomalous graphs must have terms that decay as 1/sxa
−xbdp, wherepù5, for somea,bP1,2, . . . ,n. Aside from
the sites atxa andxb, there aresn−2d other sites that need to
appear in the connected correlation function. Each brings a
new Green function, ofOs1/x2d, so the overall contribution
of any anomalous graph must decay at least as fast as
Os1/x5+2sn−2dd=Os1/x2n+1d. But we will see in the next sec-
tion that all n-point correlations decay to leading order as
1/x2n. So the anomalous graphs have no effect on the uni-
versal parts of anyn-point correlation functions. The conjec-
ture at the end of Sec. V has thus been proven for all open
boundary correlations.

X. ALL n-POINT CORRELATIONS ALONG OPEN
BOUNDARIES: PART II

Since we can ignore the anomalous graphs for open
boundary correlation functions, no error is introduced by
writing the height probability at each site as a linear combi-
nation of local arrow diagrams, independently using at each
site the linear relationships derived for the one-point func-
tions. Defining the open boundary correlationfop analo-
gously to fc for the closed casefEq. s12dg, we then have

fopsa1,a2, ¯ ,and = o
u1=1

Nloc

o
u2=1

Nloc

¯ o
un=1

Nloc

Da1u1
Da2u2

¯ Danun

3 kLop,u1
sx1dLop,u2

sx2d ¯ Lop,un
sxndl.

s30d

EachLop,uf
sxfd represents a local arrow diagram atxf, analo-

gous to the diagrams in Fig. 2, but for the open case, andNloc

is the total number of possible local arrow diagrams at a
single sitesseef16g for the list of diagramsd. D is a constant
matrix expressing height probabilities in terms of local arrow
diagrams, for one-point functions, and wassimplicitly d found
in f16g. Each correlation of local arrow diagrams can now be
calculated with the Majumdar-Dhar method.

If a site iW has local arrow constraintsu, we express those
constraints by a matrixBu, and letGuu be the Green function

matrix for the sites aroundiW. Bu andGuu are both associated

only with sites in the vicinity ofiW. pu=detsI+BuGuud gives
the one-point probability for the local arrow diagramLop,u.
The two-point correlation of local arrow diagramsu1 andu2
is given by detsI+BGd, whereB is block diagonal, withBu1
andBu2

along the block diagonal, andG is made of the four
matrix blocks Gu1u1

, Gu1u2
, Gu2u1

, and Gu2u2
. Mahieu and

Ruelle found that the leading-order contribution to thebulk
two-point probability is given byf15g

detsI + BGd = − pu1
pu2

TrH I

I + Bu1
Gu1u1

Bu1
Gu1u2

3
I

I + Bu2
Gu2u2

Bu2
Gu2u1J . s31d

Similarly, they found that the bulk, leading-order, contribu-
tion to the three-point probability is given by

detsI + BGd = pu1
pu2

pu3
TrH I

I + Bu1
Gu1u1

Bu1
Gu1u2

I

I + Bu2
Gu2u2

Bu2
Gu2u3

I

I + Bu3
Gu3u3

Bu3
Gu3u1J

+ pu1
pu2

pu3
TrH I

I + Bu1
Gu1u1

Bu1
Gu1u3

I

I + Bu3
Gu3u3

Bu3
Gu3u2

I

I + Bu2
Gu2u2

Bu2
Gu2u1J . s32d

fEquationss31d ands32d are written in a different form from
the expressions inf15g, but are equivalent.g

The derivation inf15g of Eq. s31d in the bulk relied on the
fact that the leading-order contribution to the two-point func-
tion comes from the pieces of detsI+BGd with two terms off
the block diagonalsi.e., one term fromGu1u2

and one term
from Gu2u1

d. Similarly, the derivation of Eq.s32d was based
on the fact that the leading-order, connected, contribution to
the three-point function comes from the terms of detsI
+BGd with three terms off the block diagonal.

The trace formulas can be extended for all higher-order
correlations for the open case. We will see that the leading-
order contribution to the open boundaryn-point function de-

cays asOs1/x2nd. The open boundary Green functionsAp-
pendix Cd betweensx1,y1d and sx2,y2d is

Gop,0sx1,y1;x2,y2d =
sy1 + 1dsy2 + 1d

psx1 − x2d2 + ¯ . s33d

Here,x labels distance along the boundary, andy labels dis-
tance from the boundarysthe boundary is aty=0d. Since the
Green function decays as 1/x2, we can only haven terms off
the block diagonal. Furthermore, to get a connected correla-
tion function, we must have exactly one term off the block
diagonal in every block row and in every block column. This
allows us to generalize Eqs.s31d ands32d for open boundary
n-point functions; they generalize in the obvious manner,

M. JENG PHYSICAL REVIEW E 71, 036153s2005d

036153-10



with sn−1d! trace terms for then-point function, correspond-
ing to thesn−1d! ways that we can loop through then posi-
tions.

Equations33d shows that each off-diagonal blockGuv fac-
torizes into the product of a column vector and row vector:

Gufug
=

1

psxf − xgd2huf
hug

T , s34d

where huf
is a column vector of heighty+1 of the sites

aroundxf in Lop,uf
sxfd—i.e., thepth entry ofhuf

is the value
of y+1 for thepth site of Lop,uf

sxfd. Substituting this in the
generalization of Eqs.s31d and s32d, and using the cyclicity
of the trace, each of thesn−1d! matrix traces becomes a
product ofn 131 matrices. Furthermore, thesn−1d! traces
differ from each other only in the 1/sxf −xgd2 terms chosen.
The leading-order, connected part of the correlation function
of n local arrow diagrams is then found to be

kLop,u1
sx1dLop,u2

sx2d ¯ Lop,un
sxndl = Sp

f=1

n

kufDdetM .

s35d

M is defined as then3n matrix

Mfg ; H 0 if f = g,

1/sxf − xgd2 if f Þ g,
J s36d

and theku are simply numbers:

ku ;
1

p
detsI + BuGuudShu

T I

I + BuGuu
BuhuD . s37d

Inserting this into Eq.s30d gives all open boundary
n-point correlations. To express our results in a simpler man-
ner, we define

fasxd ;
dhx,a

− pa,op

Ka
wherea = 1,…,4. s38d

We have defined the following constants:

p1,op=
9

2
−

42

p
+

320

3p2 −
512

9p3, K1 = −
3

p
+

80

3p2 −
512

9p3 ,

p2,op= −
33

4
+

66

p
−

160

p2 +
1024

9p3 , K2 =
9

p
−

200

3p2 +
1024

9p3 ,

p3,op=
15

4
−

22

p
+

160

3p2 −
512

9p3, K3 = −
7

p
+

40

p2 −
512

9p3 ,

p4,op= 1 −
2

p
, K4 =

1

p
. s39d

pa,op is the probability for a site along an open boundary to
have heighta, and theKa are normalization factors. We then,
finally, have

kfa1
sx1dfa2

sx2d ¯ fan
sxndl = detsM d. s40d

For n=2, this reproduces the open boundary one- and two-
point functions found inf16g.

detsM d is the same as then-point function of −2]u]ū, so
up to rescaling factorss−2Ka’sd, all four height variables are

represented by]u]ū along open boundaries. This is rather
surprising, given that we have seen that the height variables
are represented by different operators along closed bound-
ariesfEqs.s20d–s22dg. In CFT’s, boundary operators are de-
rived from OPE’s of bulk operators—so the fact that the
height operators are different along closed boundaries proves
that they must be different in the bulk, but apparently these
different bulk operators become identical along open bound-
aries.

We nowhere used the fact that these were the local arrow
diagrams associated with the height variables. So, in fact, we
have shown thatall local arrow diagrams along open bound-

aries are represented by]u]ū.
We have also found the correlation function ofn unit

height variables alongclosedboundaries. This requires local
arrow constraints at 3n vertices of the ASM, and thus the
calculation of a 3n-dimensional matrix determinant. The ma-
trix is divided into 333 block submatrices, such that the
diagonal blocks are all identical, and the off-diagonal blocks
all have the same form. A rotation makes the matrix diagonal
in two out of every three rowssand columnsd. The universal
part of the correlation function is thus found to be

S3p − 8

p2 Dn

detM . s41d

This confirms the field identification in Eq.s20d.

XI. n-POINT CORRELATIONS ALONG OPEN
BOUNDARIES, WITH DISSIPATIVE DEFECTS

Along open boundaries, the defect-free Green function
G0=Gop,0 does not diverge asL→`, so for a single dissipa-
tive defect we can modify the Green function as in Eq.s25d.
Using this new Green function, the open height probabilities

at sx1,0d, for a defect of strengthk at dW =s0,yd are

fopsad = − Ka
ksy + 1d2

pf1 + kGop,0sdW,dWdg

1

x1
4, a = 1,2,3,4. s42d

The sameKa factors that we saw in the height-height corre-
lations appear in height-defect correlations.

We define an operatorf5;ksdWd, corresponding to the addi-

tion of a defect of strengthk at dW =sx,yd, and then multipli-
cation of all correlation functions by a normalization factor

pf1 + kGop,0sdW,dWdg
ksy + 1d2 . s43d

Then Eq.s42d becomes
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kfasx1df5;ksx2dl = −
1

sx1 − x2d4, a Þ 5. s44d

f5;k acts just like any of the four height variables in two-
point correlationsfEq. s44d is Eq.s40d with n=2g. In fact, we
find thatf5;k acts likef1, f2, f3, andf4 in all higher-order
correlation functions, containing multiple height variables
and multiple dissipative defects.

Suppose we are calculating a correlation function withn
height variables, andm dissipative defects. The dissipative

defects are atdWw=sxw,ywd, and have strengthkw, 1øwøm.
As with the height locations, thexw coordinates of the de-
fects all scale with the same factorx, where x→`. The
change in the toppling matrix,dD;D−D0, is

dDiW,jW =Hkw if iW = jW = dWw, 1 ø w ø m,

0 otherwise.
J s45d

The Green function is modified from its defect-free value
Gop,0 to

G =
I

D
=

I

D0 + dD
=

Gop,0

I + sdDdGop,0
= o

p=0

`

Gop,0„− sdDdGop,0…
p.

s46d

GsiW, jWd can be represented as a trip fromiW to jW, where along
the trip, the traveler can visit any of the defect sites as often
as he or she wishes, each time picking up a factor of
−sdDdGop,0.

We have already seen that the defect-free correlation
function ofn height variables has a leading term ofOs1/x2nd.
If we instead use the Green function with defects, each trip to
a defect introduces a factor of 1/x2 fsee Eq.s33dg. In a con-
nected function, we should visit each defect at least once; in
the leading term, each defect will be visited from a distant
site exactly once, and the correlation function will have a
leading term ofOs1/x2sn+mdd.

After visiting dWw, we may travel repeatedly fromdWw to dWw
without picking up extra factors of 1/x2. This produces a
contribution to Eq.s46d of

o
p=0

`

f− kwG0sdWw,dWwdgp =
1

1 + kwG0sdWw,dWwd
. s47d

fWe already saw this factor for a single dissipative defect, in
Eq. s25d.g Furthermore, inspection of Eq.s33d shows that the

visit to the defect atdWw from another site will result in a
factor of kwsyw+1d2/p. With Eq. s47d, this motivates the
normalization factor in Eq.s43d.

Equation s43d normalizes the correlation function ofn
height variables andm defects. To see that the form of the
correlation function is still detsM d, expand the determinant
out into cycles. The connected part of the determinant in Eq.
s40d is a sum of closed cycles of lengthn, where each cycle
visits each of the positionssxf ,0d exactly once, and picks up
a factor of 1/sxf −xgd2 when it travels fromxf to xg. After
normalizing, the defects have exactly the same effect as the
height variables—each trip tosor fromd a defect results in a

1/x2 term from the Green function tosor fromd the defect
fEq. s33dg.

So, in the end, the correlation function ofn height vari-
ables on the boundary andm defect sites near or on the
boundary, is given by thesm+nd-dimensional matrix deter-
minant detsM d swith appropriate normalization factorsd. This
shows that dissipative defect sites along or near open bound-

aries are, like the height variables, represented by]u]ū.
Note that a dissipative defect has a much larger effect

along a closed boundary than along an open one. A defect is
represented by a dimension zero operator along a closed
boundary, but by a dimension two operator along an open
boundary. This makes sense; along open boundaries, grains
are already dissipated by topplings, so adding a little more
dissipation has only minor effects, compared to dissipation
on a closed boundary.
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APPENDIX A: ANOMALOUS GRAPHS IN BOUNDARY
TWO-POINT CORRELATIONS: PART I

In this section we discuss what we call anomalous graphs
of the first kind, which arise when converting from ASM
height probabilities to spanning tree probabilities. As stated
in Sec. V, it would be natural to expect, based on analogy
with the one-point height probabilities, for the two-point
height probabilities to be given by Eq.s5d. However, this
turns out to not be the case. Let us carefully consider how
height correlations can be turned into spanning tree prob-
abilities. We focus on the closed two-point correlations; other
cases are similar.

For correlations betweeniW and jW, Ivashkevich divided the
states of the ASM into setsSkl, consisting of states allowed
when hiWùk and hjWù l, but forbidden otherwisef16g. How-
ever, not all ASM states fall into one of these sets. There are
states that are allowed whenshiW,hjWd=s1,2d, and when
shiW,hjWd=s2,1d, but forbidden whenshiW,hjWd=s1,1d; these
states do not belong to any setSkl. One such state is shown in
Fig. 7.

We find it convenient to defineS̃kl, consisting of ASM

height configurations on the sandpile,excluding iW and jW,
which are allowed when we addshiW,hjWd=sk, ld, but both for-

FIG. 7. State not in anySkl, and in multipleS̃kl.
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bidden when we addshiW,hjWd=sk−1,ld, and also forbidden
when we addshiW,hjWd=sk, l −1d. Note that when counting

states, the fact that we do not specify the heights ofiW and jW

introduces a multiplicative factor; for example,uS̃12u
= uS12u / s3p2d for iW and jW both on a closed boundary. Now,

every state must be in at least one of the setsS̃kl, but some

states are in severalS̃kl’s. For example, the state in Fig. 7 is

in both S̃12 and S̃21.
No anomalous graphs arise for two-point correlations in-

volving at least one unit height variable, since in those cases

the relevantS̃ sets do not intersect. The number of states

where iW has height one andjW has heighth is op=1
h uS̃1pu. Fur-

thermore, the representation ofS̃1h is exactly what we would
expect; it corresponds to the number of spanning trees where
NNPiW=0 and NNPjW=h−1. So no anomalous graphs arise
when the two-point correlation has at least one unit height
variable.

Things get more complicated when both heights are
higher heights. We discuss in detail the 2-2sheight two–
height twod correlation along a closed boundary; the analysis
for the other two-point correlations is similar.

If iW and jW both have height two, we must be in at least one

S̃kl, for kø2, l ø2. S̃12 and S̃21 intersect, so the number of
2-2 states is

uS̃11u + uS̃12u + uS̃21u + suS̃22u − uS̃12 ù S̃21ud. sA1d

The first three terms all have the “natural” spanning tree

representation. The difficulty is in evaluatinguS̃22u
− uS̃12ù S̃21u. S̃22 counts states whereshiW,hjWd=s2,2d is al-
lowed, but neithershiW,hjWd=s1,2d nor shiW,hjWd=s2,1d are al-
lowed. In Fig. 8, we have started with a large rectangle,
representing the the set of states whereshiW,hjWd=s2,2d is al-
lowed, andshiW,hjWd=s1,1d is forbidden—we call this setX. In
the rectangle are two subsets, corresponding to regions
whereshiW,hjWd=s1,2d is allowed, and whereshiW,hjWd=s2,1d is
allowed—we call these two setsX1 and X2. In this Venn

diagram, S̃22 is the diagonally shaded region outside the

circles, andS̃12ù S̃21 is the cross-hatched intersection of the
two circles. Looking at the Venn diagram, we see that to find

uS̃22u− uS̃12ù S̃21u, we start with the setX, and then subtract off
the states inX1 andX2 independently. By independently we
mean that states in the intersection ofX1 and X2 get sub-
tracted off twice. So

uS̃22u − uS̃12 ù S̃21u = uXu − uX1u − uX2u. sA2d

For states inX, settingshiW,hjWd=s1,1d produces a MFSC.
sNote that we have defined the MFSC as the maximal FSC

produced when the heights at bothiW and jW are simultaneously
set to one; if only one height was set to one, then the largest
FSC might be smaller, or there might be no FSC at all.d The
set X can be partitioned into the following disjoint subsets,
depending on the shape of the MFSC:XA, the MFSC consists

of disjoint subsets aroundiW and jW; XB, the MFSC is con-

nected, withù2 neighbors ofiW and exactly 1 neighbor ofjW;
XC, the MFSC is connected, withù2 neighbors ofjW and

exactly 1 neighbor ofiW; andXD, the MFSC is connected, with

exactly 1 neighbor ofiW and exactly 1 neighbor ofjW.
X1 and X2 can be partitioned into analogously defined

subsetsX1A, X1B, etc. So, for example,X1D is the subset of
XD such thatshiW,hjWd=s1,2d is allowed. sNote thatX1C=x
andX2B=x.d We want

o
kPhA,B,C,Dj

suXku − uX1ku − uX2kud. sA3d

Our “naive” guess would be that this would equal the set of
states where NNPiW=NNPjW=1. We carefully count the states,
comparing with this guess.

XA, after subtracting off the states fromX1A and X2A, is

equal to one-fourth the number of spanning trees for whichiW

and jW each have one NNP, andhiWjøTreeiW does not border or

intersecth jWjøTreejW. sThe one-fourth comes from the fact

that the spanning tree arrows fromiW and jW can point out from
the MFSC in any direction.d TreeiW refers to the set of sites

that are predecessors ofi. The condition thathiWjøTreeiW and

h jWjøTreejW cannot border each other comes from the condi-

tion that the MFSC consist of disjoint subsets aroundiW and jW.
We now consider XB. The MFSC generated when

shiW,hjWd=s1,1d must still be a MFSC whenshiW,hjWd=s2,1d. So
shiW,hjWd=s2,2d→ s2,1d produces a MFSC that includes ex-

actly one neighbor ofjW, the site iW, and at least two ofiW’s
neighbors. Just as in Sec. III, this is equivalent to a modified
ASM, where bonds along the border of the MFSC are re-
movedsexcept for one bond ofjWd. In Eq. sA3d, X2B=x, but
we do need to subtract off states inX1B. To do this we only
count the states ofXB such thatshiW,hjWd=s1,2d is forbidden,
which implies thathiW=2→1 should produce a new, smaller
FSC, completely contained within the larger MFSC. We then
see thatuXBu− uX1Bu− uX2Bu corresponds to one-fourth of all

spanning trees where NNPiW=NNPjW=1, and eitheriWPTreejW or

iW borders TreejW, with one exception. The exception occurs
because the MFSC, by construction ofXB, can only have one
neighbor of jW. So uXBu− uX1Bu− uX2Bu will not count cases

where NNPiW=NNPjW=1, iW borders TreejW, and jW borders
TreeiW—this case is shown in Fig. 3. We label this set of
graphs asc. Sincec has NNPiW=NNPjW=1, it would be natural
to expect it to appear in the spanning trees contributing to the
height two–height two correlation function. However, since

FIG. 8. Venn diagram in the space of states whereshiW,hjWd
=s2,2d is allowed, butshiW,hjWd=s1,1d is not.
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no MFSC’s ofX have two neighbors ofiW and two neighbors
of jW, graphc does not appear inXC or XD either.

The analysis forXC is identical to that forXB, and uXCu
− uX1Cu− uX2Cu counts one-fourth the spanning trees where
NNPiW=NNPjW=1, and eitherjWPTreeiW or jW borders TreeiW, ex-
cept that, again, the spanning trees ofc are excluded.

In XD, the MFSC has only one neighbor ofiW and one
neighbor of jW. The one-to-one mapping betweenXD and
spanning tree states posesses some subtleties, but the end
result is what one would expect: The number of states in
uXDu− uX1Du− uX2Du is one-fourth the number of spanning trees
where NNPiW=NNPjW=1, and TreeiW and TreejW border each

other, butiW¹TreejW and jW¹TreeiW.

In the end, we see that 4suS̃22u− uS̃12ù S̃21ud is equal to the
number of spanning trees where NNPiW=NNPjW=1, except for

the setc, which contains all spanning trees where bothiW

borders TreejW and jW borders TreeiW. c consists of the anoma-
lous graphs of the first kind.

A similar analysis for other closed correlation functions
shows that the spanning trees inc contribute to the height
two–height three correlation, and get subtracted from the
height three–height three correlationsrelative to a “naive”
approachd. These changes are necessary for the height prob-
abilities to all sum to 1, so this provides a check on our
mapping between ASM states and spanning tree states. In the
next appendix, we consider yet another complication that
arises in the calculation of the two-point functions.

APPENDIX B: ANOMALOUS GRAPHS IN BOUNDARY
TWO-POINT CORRELATIONS: PART II

We saw in the previous appendix that Eq.s5d does not
quite hold, but is only off by the anomalous graphc. So
except for this complication, the two-point height correla-
tions can be turned into linear combinations of probabilities
for spanning trees with nonlocal conditions on NNPiW and
NNPjW. As in the previous appendix, we discuss only the
closed boundary two-point functions; other cases are similar.

As discussed in Sec. IV, we can write the probabilityNh
to have NNPiW=h−1 as a linear combination of nonlocal ar-
row diagrams, which we can then rewrite as followsssee
Figs. 1 and 2d:

N2 = 2sb1 + b2 + gd

= 2s− Lc,1 + 3Lc,2 + Lc,3d + 4sb1 − b2d + 2sf1 − f2d,

sB1d

N3 = 2sf1 + f2 + ed + d

= 2s2Lc,1 − 2Lc,2 + Lc,5d + Lc,4 − 4sb1 − b2d − 2sf1 − f2d.

sB2d

These relationships hold regardless of the correlation func-

tions thatiW are in. We define operators corresponding to the
local parts of these terms:

LN2 ; 2s− Lc,1 + 3Lc,2 + Lc,3d, sB3d

LN3 ; 2s2Lc,1 − 2Lc,2 + Lc,5d + Lc,4. sB4d

In one-point functions,b1=b2, and f1=f2, so N2 and N3
simply becomeLN2 and LN3, which are local, and whose
expectation values can be found with the Majumdar-Dhar
method, as discussed in Sec. IV.sThese are the same rela-
tions found inf16g.d

It would be simplest if in correlations ofN2 andN3, we
could replaceN2 andN3 with LN2 andLN3, since local cor-
relation functions are easily calculated. As in the previous
appendix, we call this approach “naive”—this naive ap-
proach does not quite work, and we call the deviations of the
correct answers from the naive approach “anomalous graphs
of the second kind.”

We no longer haveb1=b2 and f1=f2 in correlations of

N2 and N3, because in correlations between distant sitesiW

and jW, switching arrows atiW can affect predecessor relation-
ships at jW. To analyze thesb1−b2d terms in Eqs.sB1d and
sB2d, consider the configuration in Fig. 9, where we have not

specified the direction of the arrow fromiW. If the arrow from

iW points to iW1, then jW1 is not a predecessor ofjW, so the con-

figuration atjW is g. And if the arrow fromiW points toiW2, then
jW1 is a predecessor ofjW, so the configuration atjW is f2. So

switching fromb1 to b2 at iW can affect whether the configu-
ration at jW is f2 or g. However, this inequivalence between
b1 and b2 turns out to have no effect on any correlation
functions, to any order, sincef2 andg always appear in the
combinationf2+g, in LN2 andLN3, andf2+g has no corre-
lations withb1−b2.

Unfortunately, things become more complicated with the
f1 andf2 terms. If the long path off1 avoids arrow restric-
tions at other sites, the long path can be reversed, andf1 will
be equivalent tof2. However, if the long path goes through
arrow restrictions at other sites of the correlation function,
then f1 will not be equivalent tof2. Figure 10 compares
diagrams that arise insf1,f1d correlations, with diagrams
that arise insf2,f2d correlations. Three of the four diagrams
shown slabeled witha’sd are equivalent, but the fourth one
slabeled withbd is not. The resultant anomalous graphs of the
second kind were shown and discussed earlier, in Sec. Vssee
Fig. 4d. When all the correlations of thesf1−f2d’s in Eqs.

FIG. 9. Correlations whereb1Þb2.

FIG. 10. Correlations wheref1Þf2.
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sB1d and sB2d are considered, we find the following for
closed boundary correlations:

kN2srdN2s0dl = kLN2srdLN2s0dl + 4sa − bd, sB5d

kN2srdN3s0dl = kLN2srdLN3s0dl − 4sa − bd, sB6d

kN3srdN3s0dl = kLN3srdLN3s0dl + 4sa − bd. sB7d

The correlations involving the height one variable are unaf-
fected by these complications.

To summarize, naively transforming from nonlocal arrow
diagrams to local arrow diagramsindependentlyat every site
of a two-point correlation results in anomalous graphsa and
b.

APPENDIX C: GREEN FUNCTIONS

The inverse of the bulk toppling matrixD0 is the lattice
Green function, which has long been knownf24g. It is given
by

G0sx̃,ỹd =E
0

2p dp1

2p
E

0

2p dp2

2p

eip1x̃+ip2ỹ

4 − 2 cosp1 − 2 cosp2
.

sC1d

This integral is divergent, producing terms of order lnL,
whereL is the system size, but these divergences are usually
unimportant, since we are typically concerned with differ-

ences in Green functions. For largex̃, ỹ this has the expan-
sion f24g

G0sx̃,ỹd = −
1

4p
lnsx̃2 + ỹ2d −

g

2p
−

ln 8

4p
+ ¯ , sC2d

whereg=0.577 21. . . is the Euler-Mascheroni constant. For
sitessx1,y1d and sx2,y2d near an open boundary, wherex is
the coordinate along the boundary, andy is the distance from
the boundaryslocated aty=0d, the Green function isf25g

Gop,0sx1,y1;x2,y2d = G0sx1 − x2,y1 − y2d

− G0sx1 − x2,y1 + y2 + 2d. sC3d

Along closed boundaries, it isf25g

Gc,0sx1,y1;x2,y2d = G0sx1 − x2,y1 − y2d

+ G0sx1 − x2,y1 + y2 + 1d. sC4d

The minus sign between the Green functions in Eq.sC3d
cancels out divergences in the Green function. The expansion
of the Green function for points along the boundary has al-
ready been calculatedf25g, and can be extended to points
near the boundary, but far from each otherfy1=Os1d, y2

=Os1d, ux1−x2u→`g, by the recursion relationships,G0D0

=I. We find

Gopsx1,y1;x2,y2d =
sy1 + 1dsy2 + 1d

psx1 − x2d2 + ¯ sC5d

and

Gcsx1,y1,x2,y2d = −
1

p
lnux1 − x2u − S g

p
+

3 ln 2

2p
D − f3y1sy1 + 1d + 3y2sy2 + 1d + 1g

1

6psx1 − x2d2

+ Sy1sy1 + 1dsy1
2 + y1 − 1d + y2sy2 + 1dsy2

2 + y2 − 1d + 6y1sy1 + 1dy2sy2 + 1d −
17

60
D 1

4psx1 − x2d4 + ¯ .

sC6d

APPENDIX D: MORE CLOSED BOUNDARY
CORRELATION FUNCTIONS

Here we list the three-point correlation functions along
closed boundaries that were not stated in Sec. VI. As a check,
the correlation functions in this appendix were found by the
methods already described in Secs. V and VI. However, they
can all also be determined from those already listed in Sec.
VI, from the requirement that the three height probabilities
must sum at all sites, and by symmetry. They are listed here
only for reference, and because they provide checks on our
calculations. We find

fcs1,1,3d = −
2s4 − pds3p − 8d2

p6sx1 − x2d2sx1 − x3d2sx2 − x3d2

+
s3p − 8d2

p5sx1 − x3d3sx2 − x3d3 + ¯ , sD1d

fcs1,2,3d =
4sp − 3dsp + 8ds3p − 8d

p6sx1 − x2d2sx1 − x3d2sx2 − x3d2

−
s3p − 8d2

p5sx1 − x2d3sx2 − x3d3 −
s3p − 8ds24 − 7pd

2p5sx1 − x2d3sx1 − x3d3 ,

sD2d

fcs1,3,3d =
s3p − 8ds4 − pds8 + pd

p6sx1 − x2d2sx1 − x3d2sx2 − x3d2

+
s3p − 8ds8 − pd

2p5sx1 − x2d3sx1 − x3d3 + ¯ . sD3d

We can now check thatfcs1,1,1d+ fcs1,1,2d+ fcs1,1,3d=0,
as it must. Interchangingx2 andx3 in fcs1,1,2d gives

FOUR HEIGHT VARIABLES, BOUNDARY… PHYSICAL REVIEW E 71, 036153s2005d

036153-15



fcs1,2,1d = −
8sp − 3ds3p − 8d2

p6sx1 − x2d2sx1 − x3d2sx2 − x3d2

−
s3p − 8d2

p5sx1 − x2d3sx3 − x2d3 + ¯ . sD4d

We can then check thatfcs1,1,1d+ fcs1,2,1d+ fcs1,3,1d=0.
Three-point correlation functions with no unit height vari-
ablescannot be found with the methods in this paper, as
already discussed in Sec. VI. However, if we use the conjec-
ture proposed in Sec. V, of dropping the anomalous graphs
fas we did to obtain Eq.s23dg, we now obtain

fcs2,2,3d =
s24 − 5pds− 192 + 112p − 13p2d
4p6sx1 − x2d2sx1 − x3d2sx2 − x3d2

+
s3p − 8ds7p − 24d

2p5sx1 − x3d3sx2 − x3d3 + ¯ , sD5d

fcs2,3,3d = −
s8 + pds− 192 + 112p − 13p2d

4p6sx1 − x2d2sx1 − x3d2sx2 − x3d2

−
s3p − 8ds8 − pd

2p5sx1 − x2d3sx1 − x3d3 + ¯ , sD6d

fcs3,3,3d = −
s8 + pds64 − 32p + p2d

4p6sx1 − x2d2sx1 − x3d2sx2 − x3d2 + ¯ .

sD7d

As with the other correlation functions in this section, these
agree with the requirements that the three height probabili-
ties must sum to 1 at all sites, and with the field identifica-
tions in Eqs.s20d–s22d.

APPENDIX E: THE c=−2 CONFORMAL FIELD THEORY

The central charge −2 conformal field theory is perhaps
the simplest known logarithmic conformal field theory.
While the theory has a simple underlying Gaussian structure,
it still possesses a number of subtle features. We use the
formulation of thec=−2 CFT where the action is given by

S=
1

p
E ]u ]̄ū. sE1d

] and ]̄ refer to the holomorphic and antiholomorphic
derivatives—that is, the derivatives with respect toz=x+ iy

andz̄=x− iy. u andū are anticommuting Grassmannian vari-
ables. The action has zero modes, which make the partition
function zero. If we normalize the action by not integrating
over the zero modes, we get Wick contraction rules, with

each contraction betweenusz1d and ūsz2d giving a factor of
−lnsz1−z2d.

While boundary conformal field theories are generally
well understoodf19,28g, boundary logarithmic conformal
field theories possess a number of subtleties that are not well
understood. Results on boundary LCFT are still to some de-
gree contradictoryf29–34g. However, basic results from non-
logarithmic boundary CFT should still be expected to apply.
In particular, just as for nonlogarithmic boundary CFT’s, as
bulk operators are moved near a boundary, their antiholo-
morphic pieces should behave like holomorphic pieces at
mirror locations across the boundaryf19,30g.

APPENDIX F: A PROOF THAT THE HEIGHT VARIABLES
HAVE DIFFERENT BULK FIELD IDENTIFICATIONS

The correlation functions in Eqs.s13d–s15d, Eqs.
s17d–s19d, and Eqs.s27d–s29d show conclusively that the
three height variables are represented by different operators
along closed boundaries. As already discussed, since bound-
ary operators are derived from OPE’s of bulk operators, this
proves that the height variables must be represented by dif-
ferent operators in the bulk as wellf19g. However, it is worth
noting that this conclusion can be reached with a simple
argument, based on general principles of conformal field
theory, without doing any detailed calculations.

Suppose that all four height variables were represented
sup to multiplicative factorsd by the same field operator. The
unit height variable is known, from its two-point correlation,
to have dimension twof14g, so, by our assumption, all four
height variables would have scaling dimension two. The
height probabilities get modified from their bulk values,pB,h
sh=1,2,3,4d near a boundarysclosed or opend. Then one-
point functions of operators of dimensiond will decay as
1/yd, wherey is the distance from the boundary, andd is the
operator dimensionf28,30g.

phsyd = pB,h +
ch

y2 + ¯ , sF1d

for some constantsch. If the fields are normalizedsto have
zero expectation value and coeficient −1 in two-point corre-
lationsd, then general CFT principles predict that the coeffi-
cients of the 1/y2 terms should be universal numbers, de-
pending only on the field and the boundary conditionf28g; in
particular, they should be independent ofh. So upon normal-
izing the height variables, the differentch should all become
c̃, a number independent ofh. Since we are assuming that all
four height variables are represented by the same field, the
1-1, 2-2, 3-3, and 4-4 correlations should all have the same
sign snegatived, so this normalization should not change the
signs of the coefficients, and all thech’s should have the
same sign asc̃. However, we needoh=1

4 ch=0, for the four
height probabilites to sum to 1, so thech cannot all have the
same sign. By contradiction, the four height variables must
be represented by different fields in the bulk.
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